• 제목/요약/키워드: Full resonance

검색결과 252건 처리시간 0.021초

공진현상 감소를 위한 집적회로 패키지 설계 및 모델링 (Integrated Circuit(IC) Package Analysis, Modeling, and Design for Resonance Reduction)

  • 안덕근;어영선;심종인
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(2)
    • /
    • pp.133-136
    • /
    • 2001
  • A new package design method to reduce resonance effect due to an IC package is represented. Frequency-variant circuit model of the power/ground plane was developed to accurately reflect the resonance. The circuit model is benchmarked with a full wave simulation, thereby verifying its accuracy. Then it was shown that the proposed technique can efficiently reduce the resonance due to the IC package.

  • PDF

음향 공명 제거 및 과도 상태 전류를 제한시킨 고출력 메탈 헬라이드 램프용 전자식 안정기 설계 (The Electronic Ballast Design of Acoustic Resonance Free and Transient Over Current Limit for High Power MHL)

  • 김기남;박종연;최영민
    • 전기학회논문지
    • /
    • 제59권5호
    • /
    • pp.904-911
    • /
    • 2010
  • This paper presents the design of acoustic resonance free and over current limit during transient state consideration electronic ballast for 1.5kW Metal-Halide Lamp(MHL) that employs frequency modulation (FM) technique. The proposed ballast consists of a Full-Bridge(FB) rectifier, a passive power factor correction (PFC) circuit, a full-bridge inverter, an ignitor using LC resonance and a control circuit for frequency modulation. The frequency modulation technique is the most effective solution to eliminate acoustic resonance among other technique. It spreads power spectrum of lamp to reduce the supplied power spectrum under the energy level of eigen-value frequency. Moreover, the proposed ballast is simple and cost effective above conventional ballast. A new PFC circuit is proposed which combines with LCD type and PCSR filter. A new PFC circuit has higher PF and lower THD than conventional LCD type and secure high reliability. Finally, to protected switching components in transient state, the surge current into ballast is limited by increase the switching frequency. Performance of the proposed ballast was validated through computer simulation using Pspice, experimentation and by applying it to an electronic ballast for a prototype 1.5kW MHL.

Metamaterial 기판에 의한 평행평판 공진 및 임피던스 특성 (Characteristics of the Resonance and Impedance of Parallel Plates due to the Embedded Metamaterial Substrate)

  • 강승택
    • 대한전자공학회논문지TC
    • /
    • 제45권8호
    • /
    • pp.41-46
    • /
    • 2008
  • 본 논문에서는 금속 평행평판에 일반 유전체 기판인 FR4 대신 Metamaterial을 삽입할 경우에 발생할 수 있는 전자기 공진 특성과 임피던스 변화에 대하여 연구하였다. 기판을 DPS는 물론 Metamateral인 ENG, MNG, DNG 형으로 나눠, 투자율 함수를 위해 SRR 형식의 Lorentz 모델과, 유전율 함수를 위해 금속선 주기 배열 형식의 Drude 모델을 정확한 계산이 가능한 Full-wave 모드해석기법에 반영하여 평행평판이 가지는 공진모드들과 임피던스의 변화양상을 관측하였다. 관측을 통해 전자장비의 품질을 저하시키는 평행평판의 불요공진모드 억제를 위한 기판설계 가이드라인을 수립할 수 있었다.

고감도 단금속 및 쌍금속 표면 플라즈몬 공명 센서 설계를 위한 수치해석 연구 (Numerical Investigation on Surface Plasmon Resonance Sensor Design with High Sensitivity Using Single and Bimetallic Film Structures)

  • 권혁록;이성혁
    • 전기학회논문지
    • /
    • 제58권4호
    • /
    • pp.795-800
    • /
    • 2009
  • Surface plasmon resonance (SPR) has been widely used for biological and chemical sensing applications. The present study investigates numerically the optical characteristics for the single Au film and bimetallic Ag/Au film SPR configurations by using the multiple beam interference matrix (MBIM) method. We use the prism coupling method, especially Kretschmann configuration for excitation of surface plasmon wave (SPW). The estimated results of reflectance, phase shift and magnetic field intensity enhancement factor are provided for finding out the optimum configuration with high sensitivity for SPR measurement. As a result, the optimum thicknesses are found to be 52 nm for a single Au film and 5 nm to 36 nm for bimetallic Ag-Au film. From the comparison of full width half maximum (FWHM) values for reflectance, phase shift, and enhancement of magnetic field intensity, it is concluded that the highest sensitivity can be obtained when using the phase shift for SPR sensor.

Resonance Elastic Scattering and Interference Effects Treatments in Subgroup Method

  • Li, Yunzhao;He, Qingming;Cao, Liangzhi;Wu, Hongchun;Zu, Tiejun
    • Nuclear Engineering and Technology
    • /
    • 제48권2호
    • /
    • pp.339-350
    • /
    • 2016
  • Based on the resonance integral (RI) tables produced by the NJOY program, the conventional subgroup method usually ignores both the resonance elastic scattering and the resonance interference effects. In this paper, on one hand, to correct the resonance elastic scattering effect, RI tables are regenerated by using the Monte Carlo code, OpenMC, which employs the Doppler broadening rejection correction method for the resonance elastic scattering. On the other hand, a fast resonance interference factor method is proposed to efficiently handle the resonance interference effect. Encouraging conclusions have been indicated by the numerical results. (1) For a hot full power pressurized water reactor fuel pin-cell, an error of about +200 percent mille could be introduced by neglecting the resonance elastic scattering effect. By contrast, the approach employed in this paper can eliminate the error. (2) The fast resonance interference factor method possesses higher precision and higher efficiency than the conventional Bondarenko iteration method. Correspondingly, if the fast resonance interference factor method proposed in this paper is employed, the $k_{inf}$ can be improved by ~100 percent mille with a speedup of about 4.56.

Asymmetrical Pulse-Width-Modulated Full-Bridge Secondary Dual Resonance DC-DC Converter

  • Chen, Zhangyong;Zhou, Qun;Xu, Jianping;Zhou, Xiang
    • Journal of Power Electronics
    • /
    • 제14권6호
    • /
    • pp.1224-1232
    • /
    • 2014
  • A full-bridge secondary dual-resonant DC-DC converter using the asymmetrical pulse-width modulated (APWM) strategy is proposed in this paper. The proposed converter achieves zero-voltage switching for the power switches and zero-current switching for the rectifier diodes in the whole load range without the help of any auxiliary circuit. Given the use of the APWM strategy, a circulating current that exists in a traditional phase-shift full-bridge converter is eliminated. The voltage stress of secondary rectifier diodes in the proposed converter is also clamped to the output voltage. Thus, the existing voltage oscillation of diodes in traditional PSFB converters is eliminated. This paper presents the circuit configuration of the proposed converter and analyzes its operating principle. Experimental results of a 1 kW 385 V/48 V prototype are presented to verify the analysis results of the proposed converter.

공진 점등 기능과 효율 향상을 위한 HID 램프의 저주파수 구형파 2단 전자식 안정기 (Digital Control of Low-Frequency Square-Wave Two-Stage Electronic Ballast for HID Lamps with Resonant Ignition and High Efficiency)

  • 이우철
    • 조명전기설비학회논문지
    • /
    • 제27권2호
    • /
    • pp.69-76
    • /
    • 2013
  • In this paper, electronic ballast using resonant inverter for HID lamp is designed and implemented. The proposed electronic ballast is used the soft switching technology ZVS(Zero Voltage Switching) to reduce turn-on and turn-off loss. The ignition of proposed electronic ballast is achieved by controlling a full bridge inverter which is consisted of LC filter for resonance. After ignition the ballast operates as a low frequency square wave inverter by controlling a full bridge inverter as a buck converter. After ignition at resonant frequency of $f_o$=160kHz, the switching frequency of a buck converter is consisted of 50kHz of high frequency and 170Hz of low frequency. This is for attenuating high frequency harmonics and avoiding acoustic resonance. The experimental results show that electronic ballast using resonant inverter is operated stably.

음향 공명 현상을 제거한 MHL용 고출력 전자식 안정기 설계 (High-Power Electronic Ballast Design for Metal-Halide Lamp without Acoustic Resonance)

  • 박종연;김기남;이봉진
    • 전기학회논문지
    • /
    • 제57권7호
    • /
    • pp.1187-1194
    • /
    • 2008
  • This paper presents a high-power electronic ballast for a metal-hallide lamp(MHL) that employs frequency modulation(FM) technique to eliminate acoustic resonance(AR). The proposed ballast consists of a full-bridge rectifier, a power factor correction(PFC) circuit, a full-bridge(FB) inverter, an ignitor using LC resonance and an FM control circuit. Whereas a manual PFC provides advantages in terms of high reliability and low cost for constructing the circuit, it is difficult to supply a stable voltage because of the output voltage ripple that occurs with a period of 120Hz. Although the ballast can be designed with a small size and a light weight if it is driven at a switching frequency between 1 and 100 kHz, AR will occur if the eigen-value frequency of the lamp coincides with the inverter's operation frequency. The operation frequency was modulated in real time according to the output voltage ripple to compensate for the variation in power supplied to the lamp and eliminate AR. Performance of the proposed technique was validated through numerical analysis, computer simulation using PSPICE and by applying it to an electronic ballast for a prototype 1kW MHL.