• Title/Summary/Keyword: Full can test

Search Result 790, Processing Time 0.025 seconds

What are Valuable Positive Signs of Supraspinatus Test for Diagnosis of Torn Rotator Cuff? - Comparison of Pain and Weakness in "Empty Can Test" and "Full Can Test" - (회전근 개 파열의 진단을 위한 극상근 검사에서 유용한 양성 징후는 무엇인가? - "Empty can test"와 full can test"에서 통증과 근력 약화의 비교 -)

  • Shin, Hun-Kyu;Kim, Eu-Gene;Jeong, Hwa-Jae;Kim, Jong-Min;Choi, Jae-Yol;Lee, Yong-Taek
    • Clinics in Shoulder and Elbow
    • /
    • v.10 no.1
    • /
    • pp.27-32
    • /
    • 2007
  • Purpose: To investigate the validity of positive signs of supraspinatus test. Materials and Methods: The empty can test and full can test were performed on 200 shoulders which were diagnosed with magnetic resonance imaging or surgical findings as full thickness tear, partial thickness tear and no tear. Presence of pain, weakness, pain or weakness, and both pain and weakness were recorded as positive signs separately. The two tests with positive signs were compared and analyzed. Results: Pain and weakness were severity-dependent, and the empty-can test had a higher incidence of pain. The sensitivities of the two supraspinatus tests in all positive signs were higher when including partial-thickness tears in the tear group; however, their specificities were higher when excluding partial-thickness tears. The sensitivities of an empty-can test in 'pain', 'pain or weakness', 'both pain and weakness' were higher than those of the full-can test, otherwise, the specificity of the full-can test for 'pain' and 'pain or weakness' were higher. Concordance rate between 'pain or weakness' and 'pain' was the highest in all categorization. Conclusion: Both empty can and full can test were valuable for detecting torn rotator cuff.

Setup Procedure of Dump Valve for Full-Scale Airframe Test (전기체 구조시험의 덤프밸브 조절절차 개발;)

  • Kim, Sung-Chan;Kim, Sung-Jun;Hwang, In-Hee
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1252-1257
    • /
    • 2003
  • This paper present a procedure of meter-out flow control method for dump valve in full-scale airframe test. Emergency stop, which results in dump state, can be happened during full-scale airframe test by several causes. Because servo valve can't control hydraulics actuator in the dump state, pressure in cylinder chamber may rise abruptly and overload can be acted to the test article. In this paper, the procedure and technology of orifice setting are investigated to protect the test article from unexpected loads by dump. The test results show that the presented methods decrease peak loads and improve unloading characteristics of hydraulic actuators in the dump state.

  • PDF

Development of a Piping Integrity Evaluation Simulator Based on the Hardware-in-the-Loop Simulation (하드웨어-인-더-루프 기반의 배관 평가 시뮬레이터의 개발)

  • Kim, Yeong-Jin;Heo, Nam-Su;Cha, Heon-Ju;Choe, Jae-Bung;Pyo, Chang-Ryul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1031-1038
    • /
    • 2001
  • In order to verify the analytical methods predicting failure behavior of cracked piping, full-scale pipe tests are crucial in nuclear power plant piping. For this reason, series of international test programs have been conducted. However, full-scale pipe tests require expensive testing equipment and long period of testing time. The objective of this paper is to develop a test system which can economically simulate the full-scale pipe test regarding the integrity evaluation. This system provides the failure behavior of cracked pipe by testing a wide-plate specimen. The system provides the failure behavior of cracked pipe by testing a wide-plate specimen. The system was developed for the integrity evaluation of nuclear piping based on the methodology of hardware-in-the-loop (HiL) simulation. Using this simulator, the piping integrity can be evaluated based on the elastic-plastic behavior of full-scale pipe, and the high cost full-scale pipe test may be replaced with this economical system.

Experimental and analytical behaviour of composite slabs

  • Lopes, Emanuel;Simoes, Rui
    • Steel and Composite Structures
    • /
    • v.8 no.5
    • /
    • pp.361-388
    • /
    • 2008
  • The Eurocode 4 presents some negative aspects in the design of composite slabs by the m-k Method or the Partial Connection Method. On one hand, the component chemical adherence is not accounted for in the connection between the profiled steel sheet and the concrete. On the other hand, the application of these methods requires some fitting parameters that must be determined by full scale tests. In this paper, the Eurocode 4 methods are compared with a method developed at the Federal Polytechnic School of Lausanne, based on pullout tests, which can be a valid alternative. Hence, in order to calculate the necessary parameters for the three methods, several tests have been performed such as the full scale test described in Eurocode 4 and pull-out tests. This last type of tests is of small dimensions and implicates lower costs. Finally, a full-scale test of a steel-concrete composite slab with a generic loading is presented, with the goal of verifying the analytical formulation.

과하중 방지기의 전기체 구조시험 적용에 관한 연구

  • Kim, Sung-Chan;Chae, Dong-Chul;Kim, Sung-Jun;Hwang, In-Hee
    • Aerospace Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.11-17
    • /
    • 2003
  • This paper present a method of meter-out flow control for overload protection valve in full-scale airframe test. Emergency stop, which results in dump state, can be happened during full-scale airframe test by several causes. Because servo valve can't control hydraulics actuator in the dump state, pressure in cylinder chamber may rise abruptly and overload can be acted to the test article. In this paper, the procedure and technology of orifice setting are investigated to protect the test article from unexpected loads by dump. The test results show that the presented methods decrease peak loads and improve unloading characteristics of hydraulic actuators in the dump state.

  • PDF

Model-Ship Correlation Study on the Powering Performance for a Large Container Carrier

  • Hwangbo, S.M.;Go, S.C.
    • Journal of Ship and Ocean Technology
    • /
    • v.5 no.4
    • /
    • pp.44-50
    • /
    • 2001
  • Large container carriers are suffering from lack of knowledge on reliable correlation allowances between model tests and full-scale trials, especially at fully loaded condition, Careful full-scale sea trial with a full loading of containers both in holds and on decks was carried out to clarify it. Model test results were analyzed by different methods but with the same measuring data to figure out appropriated correlations factors for each analysis methods, Even if it is no doubt that model test technique is one of the most reliable tool to predict full scale powering performance, its assumptions and simplifications which have been applied on the course of data manipulation and analysis need a feedback from sea trial data for a fine tuning, so called correlation factor. It can be stated that the best correlation allowances at fully loaded condition for both 2-dimensional and 3-dimensional analysis methods are fecund through the careful sea trial results and relevant study on the large size container carriers.

  • PDF

Verifying ASCE 41 the evaluation model via field tests of masonry infilled RC frames with openings

  • Huang, Chun-Ting;Chiou, Tsung-Chih;Chung, Lap-Loi;Hwang, Shyh-Jiann;Jaung, Wen-Ching
    • Earthquakes and Structures
    • /
    • v.19 no.3
    • /
    • pp.157-174
    • /
    • 2020
  • The in-situ pushover test differs from the shake-table test because it is performed outdoors and thus its size is not restricted by space, which allows us to test a full-size building. However, to build a new full-size building for the test is not economical, consequently scholars around the world usually make scale structures or full-scale component units to be tested in the laboratory. However, if in-situ pushover tests can be performed on full-size structures, then the seismic behaviors of buildings during earthquakes can be grasped. In view of this, this study conducts two in-situ pushover tests of reinforced concrete (RC) buildings. One is a masonry-infilled RC building with openings (the openings ratio of masonry infill wall is between 24% and 51%) and the other is an RC building without masonry infill. These two in-situ pushover tests adopt obsolescent RC buildings, which will be demolished, to conduct experiment and successfully obtain seismic capacity curves of the buildings. The test results are available for the development or verification of a seismic evaluation model. This paper uses ASCE 41-17 as the main evaluation model and is accompanied by a simplified pushover analysis, which can predict the seismic capacity curves of low-rise buildings in Taiwan. The predicted maximum base shear values for masonry-infilled RC buildings with openings and for RC buildings without masonry infill are, respectively, 69.69% and 87.33% of the test values. The predicted initial stiffness values are 41.04% and 100.49% of the test values, respectively. It can be seen that the ASCE 41-17 evaluation model is reasonable for the RC building without masonry infill walls. In contrast, the analysis result for the masonry infilled RC building with openings is more conservative than the test value because the ASCE 41-17 evaluation model is limited to masonry infill walls with an openings ratio not exceeding 40%. This study suggests using ASCE 41-17's unreinforced masonry wall evaluation model to simulate a masonry infill wall with an openings ratio greater than 40%. After correction, the predicted maximum base shear values of the masonry infilled RC building with openings is 82.60% of the test values and the predicted initial stiffness value is 67.13% of the test value. Therefore, the proposed method in this study can predict the seismic behavior of a masonry infilled RC frame with large openings.

Improved Current Source using Full-Bridge Converter Type for Thyristor Valve Test of HVDC System (HVDC 시스템의 SCR 사이리스터 밸브 시험을 위한 Full-Bridge Converter 방식의 개선된 전류원 회로)

  • Jung, Jae-Hun;Cho, Han-Je;Goo, Beob-Jin;Nho, Eui-Cheol;Chung, Yong-Ho;Baek, Seung-Taek
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.4
    • /
    • pp.363-368
    • /
    • 2015
  • This paper deals with an improved current source using full-bridge converter type for thyristor valve test of HVDC system. The conventional high-current and low-voltage source of synthetic test circuit requires additional auxiliary power supply to provide the reverse voltage for the auxiliary thyristor valve during turn-off process. The proposed circuit diagram to provide the reverse voltage is extremely simple because no additional component is required. The reverse voltage can be obtained from the input DC voltage of the high-current and low-voltage power supply. The operation principle and design method of the proposed system are described. Simulation and experimental results in scaled down STC of 200 V, 30 A demonstrate the validity of the proposed scheme.

No-Holding Partial Scan Test Mmethod for Large VLSI Designs (대규모 집적회로 설계를 위한 무고정 부분 스캔 테스트 방법)

  • 노현철;이동호
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.3
    • /
    • pp.1-15
    • /
    • 1998
  • In this paper, we propose a partial scan test method which can be applied to large VLSI designs. In this method, it is not necessary to hold neither scanned nor unscanned flip-flops during scan in, test application,or scan out. This test method requires almost identical design for testability modification and test wave form when compared to the full scan test method, and the method is applicable to large VLSI chips. The well known FAN algorithm has been modified to devise to sequential ATPG algorithm which is effective for the proposed test method. In addition, a partial scan algorithm which is effective for the proposed test method. In addition, a partial algorithm determined a maximal set of flip-flops which gives high fault coverage when they are unselected. The experimental resutls show that the proposed method allow as large as 20% flip-flops to remain unscanned without much decrease in the full scan fault coverage.

  • PDF

전기체 구조시험을 위한 고성능 과하중 방지 모듈 개발

  • Chae, Dong-Chul;Kim, Sung-Chan;Hwang, Gui-Chul;Sung, Kyung-Jin;Shim, Jae-Yeul;Hwang, In-Hee
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.208-216
    • /
    • 2004
  • Advanced overload protection module for full scale airframe structural test was developed by improving the existing overload protection module. When performing the full scale airframe structural test, overload can be applied to the test article due to unexpected situations such as system shutdown, test article failure, and deficiency of design strength. Therefore, the overload protection module is needed for protecting the test article in unexpected overload situations. In this paper, the function of the existing overload protection module was summarized for each component and the problems encountered when using it in structural test were analyzed in addition, the development of advanced overload protection module was described.

  • PDF