• 제목/요약/키워드: Full Peak Efficiency

검색결과 71건 처리시간 0.019초

A High-efficiency Method to Suppress Transformer Core Imbalance in Digitally Controlled Phase-shifted Full-bridge Converter

  • Yu, Juzheng;Qian, Qinsong;Sun, Weifeng;Zhang, Taizhi;Lu, Shengli
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.823-831
    • /
    • 2016
  • A high-efficiency method is proposed to suppress magnetic core imbalance in phase-shifted full-bridge (PSFB) converters. Compared with conventional solutions, such as controlling peak current mode (PCM) or adding DC blocking capacitance, the proposed method has several advantages, such as lower power loss and smaller size, because the additional current sensor or blocking capacitor is removed. A time domain model of the secondary side is built to analyze the relationship between transformer core imbalance and cathode voltage of secondary side rectifiers. An approximate control algorithm is designed to achieve asymmetric phase control, which reduces the effects of imbalance. A 60 V/15 A prototype is built to verify the proposed method. Experimental results show that the numerical difference of primary side peak currents between two adjacent cycles is suppressed from 2 A to approximately 0 A. Meanwhile, compared with the PCM solution, the efficiency of the PSFB converter is slightly improved from 93% to 93.2%.

환경시료의 방사능 분석에서 Monte Carlo 방법을 이용한 자체흡수 효과 보정 (Corrections of Self-Absorption Effect Using the Monte Carlo Method in the Radioactivity Analysis of Environmental Samples)

  • 서범경;이대원;이길용;윤윤일;양태건
    • Journal of Radiation Protection and Research
    • /
    • 제26권2호
    • /
    • pp.51-58
    • /
    • 2001
  • 환경방사능과 같은 저준위 방사능 측정에서는 원통형과 Marinelli형 측정용기가 가장 일반적으로 사용된다. 효율교정용 표준선원과 측정시료의 높이 또는 매질의 밀도가 다르면 자체흡수 효과의 차이로 인한 보정이 필요하다. 본 연구에서는 Monte Carlo 방법을 이용하여 HPGe 검출기의 전에너지 피크 효율을 계산하여 측정치와 비교하였다. 원통형 용기에 대해서는 높이에 대한 효율변화 정도를 계산하였고, 원통형 및 Marinelli 측정용기에 대해서는 밀도변화에 따른 효율을 계산하였다. 밀도에 따른 효율의 감소 정도는 1000keV 이하의 에너지 영역에 대해 자체흡수 효과의 보정치 필요하다는 것을 알았다. 또한 계산의 타당성을 검증하기 위하여 NIST SRM 4353 표준물질을 이용하여 계산값과 인증값을 상호비교한 결과 오차범위 이내로 잘 맞는 다는 것을 확인하였다.

  • PDF

전 에너지 흡수 피크 분석용 GUI 기반 교육용 프로그램 개발 (A Development of GUI Full-Energy Absorption Peak Analysis Program for Educational Purpose)

  • 손종완;신명석;이혜정;정경수;정민수;김상년
    • Journal of Radiation Protection and Research
    • /
    • 제34권2호
    • /
    • pp.69-75
    • /
    • 2009
  • 교육적 목적으로 감마선 검출기 계통의 특성에 대한 정보를 세밀하게 얻기 위하여, Delphi코드를 이용하여 전 에너지 흡수 피크 스펙트럼을 편리하게 분석할 수 있는 그래픽 사용자 인터페이스 방식의 컴퓨터 프로그램을 개발하였다. 피크는 4개의 비선형 모양함수를 사용하여 최소제곱법으로 적합하였다. 이들 4개의 비선형함수 속에 들어있는 12개의 계수값들을 사용자 인터페이스 화면에서 결정하는 과정을 상세히 서술하였다. 개발된 프로그램을 HPGe 검출기에서 측정된 1 $\mu$Ci 밀봉 점선원 $^{137)Cs$ 661KeV 감마선의 피크분석에 적용하여 계수값 탐색의 예를 예시하였다.

Improving the Overall Efficiency for DC/DC Converter with LoV-HiC System

  • Han, Dong-Hwa;Lee, Young-Jin;Kwon, Wan-Sung;Bou-Rabee, Mohammed A.;Choe, Gyu-Ha
    • Journal of Power Electronics
    • /
    • 제12권3호
    • /
    • pp.418-428
    • /
    • 2012
  • It is very important to improve the overall efficiency of systems with a source of power that has low-voltage high-current terminal characteristics such as fuel cells. A resonant converter is required for high efficiency systems. However, the peak value of the switches current is large in a resonant converter. This peak current requires a large number of switches and results in system failures. In this paper, an analysis and experiments of a resonant isolation push-pull converter are performed. A switching loss analysis is performed in order to compare losses between a resonant push pull converter and a hard switching push-pull converter. Specially, the conduction loss is studied based on the ratio between the resonant frequency and the switching frequency. In addition, a method for improving the efficiency is implemented with conventional HF insolation converters.

Out-of-plane behavior of perforated masonry walls strengthened with steel-bar truss system

  • Hwang, Seung-Hyeon;Mun, Ju-Hyun;Yang, Keun-Hyeok;Kim, Sanghee
    • Structural Engineering and Mechanics
    • /
    • 제83권6호
    • /
    • pp.799-810
    • /
    • 2022
  • This study investigated the effect of the strengthening efficiency of unbonded steel-bar truss system on the out-of-plane behavior of perforated masonry walls. Four full-scale unreinforced masonry (URM) walls with two different planes were prepared using the unbonded steel-bar truss system and a URM walls without strengthening. All masonry walls were tested under constant axial and cyclic lateral loads. The obtained test results indicated that the pinching effect in the out-plane behavior of masonry walls tends to decrease in the in- and out-of-plane strengthened URM walls using the unbonded steel-bar truss system with the higher prestressing force ratio (Rp) of vertical reinforcing bars in the unbonded steel-bar truss system, regardless of the perforated type of the masonry wall. Consequently, the highest maximum shear resistance and cumulative dissipated energy at peak load in the post-peak behavior were observed in the in- and out-plane strengthened URM walls with the highest Rp values, which are 2.7 and 6.0 times higher than those of URM. In particular, the strengthening efficiency of the unbonded steel-bar truss system was primarily attributed to the vertical prestressed steel-bars rather than the diagonal steel-bars, which indicates that the strains in the vertical prestressed steel-bars at the peak load were approximately 1.6 times higher than those in the diagonal steel-bars.

Experimental and Simulated Efficiency of a HPGe Detector in the Energy Range of $0.06{\sim}11$ MeV

  • Park Chang Su;Sun Gwang Min;Choi H.D.
    • Nuclear Engineering and Technology
    • /
    • 제35권3호
    • /
    • pp.234-242
    • /
    • 2003
  • The full energy peak efficiency of a hyper pure germanium (HPGe) detector was calibrated in a wide energy range from 0.06 to 11 MeV. Both the experimental technique and the Monte Carlo method were used for the efficiency calibration. The measurement was performed using the standard radioisotopes in the low energy region of $60{\sim}1408$ keV, which was further extended up to 11 MeV by using the $^{14}N(n,r)\;and\;^{35}Cl(n,r)$ reactions. The GEANT Monte Carlo code was used for efficiency calculation. The calculated efficiency had the same dependency on the r-ray energy with the measurement, and the discrepancy between the calculation and the measurement was minimized by fine-tuning of the detector geometry. From the calculated result, the efficiency curve of the HPGe detector was reliably determined particularly in the high energy region above several MeV, where the number of measured efficiency points is relatively small despite the wide energy region. The calculated efficiency agreed with the measurement within about $7\%$. In addition to the efficiency calculation, the origin of the local minimum near 600 keV on the efficiency curve was analyzed as a general characteristics of a HPGe detector.

New mathematical approach to calculate the geometrical efficiency using different radioactive sources with gamma-ray cylindrical shape detectors

  • Thabet, Abouzeid A.;Hamzawy, A.;Badawi, Mohamed S.
    • Nuclear Engineering and Technology
    • /
    • 제52권6호
    • /
    • pp.1271-1276
    • /
    • 2020
  • The geometrical efficiency of a source-to-detector configuration is considered to be necessary in the calculation of the full energy peak efficiency, especially for NaI(Tl) and HPGe gamma-ray spectroscopy detectors. The geometrical efficiency depends on the solid angle subtended by the radioactive sources and the detector surfaces. The present work is basically concerned to establish a new mathematical approach for calculating the solid angle and geometrical efficiency, based on conversion of the geometrical solid angle of a non-axial radioactive point source with respect to a circular surface of the detector to a new equivalent geometry. The equivalent geometry consists of an axial radioactive point source with respect to an arbitrary elliptical surface that lies between the radioactive point source and the circular surface of the detector. This expression was extended to include coaxial radioactive circular disk source. The results were compared with a number of published data to explain how significant this work is in the efficiency calibration procedure for the γ-ray detection systems, especially in case of using isotropic radiating γ-ray sources in the form of point and disk shapes.

p-type HPGe 검출기 특성에 따른 밀도 보정인자 의존도 평가 (Dependence Evaluation of the Self-Absorption Correction Factor for p-type High Purity Germanium Detector Characteristics)

  • 장미;지영용;김창종;이완로;강문자
    • 방사성폐기물학회지
    • /
    • 제13권4호
    • /
    • pp.295-300
    • /
    • 2015
  • HPGe 검출기를 이용하여 밀도가 다양한 환경시료에 대한 정밀 분석시 정확한 분석을 위해서는 밀도보정인자가 필요하다. 밀도에 대한 보정인자를 구하기 위해서 본 연구에서는 몬테카를로 코드인 MCNPX 코드를 사용하여 크리스털의 높이, 지름 및 코어의 크기와 같은 특성이 다른 세 대의 p-type HPGe 검출기를 모사하고 밀도 $1g/m^3$의 교정용 표준시료를 이용하여 모델링을 검증하였다. 검증을 통하여 모델링을 확정한 후 0.3, 0.6, 0.9, 1.0, 1.2, $1.5g/m^3$ 밀도를 가진 샘플에 대한 효율을 시뮬레이션하고 밀도보정인자를 도출하였다. 도출된 각 검출기에 대한 밀도보정인자를 비교하였을 때 전 에너지 범위에서 그 차이가 거의 없음을 확인하였으며 이는 검출기의 크리스털과 같은 주요 특성에 대해 밀도보정인자가 독립적임을 의미한다.

Efficiency calibration and coincidence summing correction for a NaI(Tl) spherical detector

  • Noureddine, Salam F.;Abbas, Mahmoud I.;Badawi, Mohamed S.
    • Nuclear Engineering and Technology
    • /
    • 제53권10호
    • /
    • pp.3421-3430
    • /
    • 2021
  • Spherical NaI(Tl) detectors are used in gamma-ray spectrometry, where the gamma emissions come from the nuclei with energies in the range from a few keV up to 10 MeV. A spherical detector is aimed to give a good response to photons, which depends on their direction of travel concerning the detector center. Some distortions in the response of a gamma-ray detector with a different geometry can occur because of the non-uniform position of the source from the detector surface. The present work describes the calibration of a NaI(Tl) spherical detector using both an experimental technique and a numerical simulation method (NSM). The NSM is based on an efficiency transfer method (ETM, calculating the effective solid angle, the total efficiency, and the full-energy peak efficiency). Besides, there is a high probability for a source-to-detector distance less than 15 cm to have pulse coincidence summing (CS), which may occur when two successive photons of different energies from the same source are detected within a very short response time. Therefore, γ-γ ray CS factors are calculated numerically for a 152Eu radioactive cylindrical source. The CS factors obtained are applied to correct the measured efficiency values for the radioactive volumetric source at different energies. The results show a good agreement between the NSM and the experimental values (after correction with the CS factors).

Dead Layer Thickness and Geometry Optimization of HPGe Detector Based on Monte Carlo Simulation

  • Suah Yu;Na Hye Kwon;Young Jae Jang;Byungchae Lee;Jihyun Yu;Dong-Wook Kim;Gyu-Seok Cho;Kum-Bae Kim;Geun Beom Kim;Cheol Ha Baek;Sang Hyoun Choi
    • 한국의학물리학회지:의학물리
    • /
    • 제33권4호
    • /
    • pp.129-135
    • /
    • 2022
  • Purpose: A full-energy-peak (FEP) efficiency correction is required through a Monte Carlo simulation for accurate radioactivity measurement, considering the geometrical characteristics of the detector and the sample. However, a relative deviation (RD) occurs between the measurement and calculation efficiencies when modeling using the data provided by the manufacturers due to the randomly generated dead layer. This study aims to optimize the structure of the detector by determining the dead layer thickness based on Monte Carlo simulation. Methods: The high-purity germanium (HPGe) detector used in this study was a coaxial p-type GC2518 model, and a certified reference material (CRM) was used to measure the FEP efficiency. Using the MC N-Particle Transport Code (MCNP) code, the FEP efficiency was calculated by increasing the thickness of the outer and inner dead layer in proportion to the thickness of the electrode. Results: As the thickness of the outer and inner dead layer increased by 0.1 mm and 0.1 ㎛, the efficiency difference decreased by 2.43% on average up to 1.0 mm and 1.0 ㎛ and increased by 1.86% thereafter. Therefore, the structure of the detector was optimized by determining 1.0 mm and 1.0 ㎛ as thickness of the dead layer. Conclusions: The effect of the dead layer on the FEP efficiency was evaluated, and an excellent agreement between the measured and calculated efficiencies was confirmed with RDs of less than 4%. It suggests that the optimized HPGe detector can be used to measure the accurate radioactivity using in dismantling and disposing medical linear accelerators.