• Title/Summary/Keyword: Fukushima Nuclear Plant

Search Result 171, Processing Time 0.031 seconds

Evaluation of the Actual Conditions for the Construction of a Firefighting Safety Management System in Domestic Power Plants (국내발전소 소방안전경영시스템구축을 위한 실태평가에 관한 연구)

  • Kang, Gil-Soo;Choi, Jae-wook
    • Fire Science and Engineering
    • /
    • v.32 no.1
    • /
    • pp.89-98
    • /
    • 2018
  • Fire accidents in foreign countries, like the accident in a thermal power plant in Beijing, the accidents in domestic power plants, including Boryeong Power Plant in 2012 and Taean Power Plant in 2016, a disaster in a nuclear power plant in Fukushima in 2011 or the large-scale power failure in California in 2001 are safety accidents related to electric power, which caused losses in the people's stable lives and the countries. Electricity has an absolute impact on the people's life and the economy, so we can easily expect the serious situation affecting economic growth as well as direct damage to the protection of the people's lives and the losses of properties, if there are fire or explosion accidents or radioactive leak because of negligence in safety management, or problems because of natural disasters like an earthquake in power plants that generate electricity. In this study, it was drawn the improvement of the organizations exclusively in charge of firefighting, the operation of a program for the improvement of professional competency, the development of a customized firefighting management system for plants for systematic firefighting safety management and the improvement of the earthquake-proof correspondence system, which has recently become an issue, as measures for improvements through a survey of the actual conditions concerning the necessity of the construction of a firefighting safety management system for power plants with five power generation companies, including Korea Southern Power Co., Ltd., and the persons in charge of firefighting safety Korea Hydro & Nuclear Power Co., Ltd.

Evaluation of Separation Distance from the Temporary Storage Facility for Decontamination Waste to Ensure Public Radiological Safety after Fukushima Nuclear Power Plant Accident (후쿠시마 원전 사고 이후 일반인의 방사선학적 안전성 확보를 위한 제염폐기물 임시저장시설 이격거리 평가)

  • Kim, Min Jun;Go, A Ra;Kim, Kwang Pyo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.3
    • /
    • pp.201-209
    • /
    • 2016
  • The object of this study was to evaluate the separation distance from a temporary storage facility satisfying the dose criteria. The calculation of ambient dose rates took into account cover soil thickness, facility size, and facility type by using MCNPX code. Shielding effects of cover soil were 68.9%, 96.9% and 99.7% at 10 cm, 30 cm and 50 cm respectively. The on-ground type of storage facility had the highest ambient dose rate, followed by the semi-ground type and the underground type. The ambient dose rate did not vary with facility size (except $5{\times}5{\times}2m\;size$) due to the self-shielding of decontamination waste in temporary storage. The separation distances without cover soil for a $50{\times}50{\times}2m\;size$ facility were evaluated as 14 m (minimum radioactivity concentration), 33 m (most probably radioactivity concentration), and 57 m (maximum radioactivity concentration) for on-ground storage type, 9 m, 24 m, and 45 m for semi-underground storage type, and 6 m, 16 m, and 31 m for underground storage type.

The Analysis of the Collimator & Radiation Shield for the Radiation Sensor for the 3Dimension Radiation Detection (3차원 방사선 탐지장치용 검출센서의 차폐체 및 Collimator 구조 분석 연구)

  • Hwang, Young-Gwan;Lee, Nam-Ho;Park, Sumg-Hun;Jeong, Sang-Hun;Kim, Jong-Ryul;Choi, Myung-Jin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.707-709
    • /
    • 2014
  • The radiation sources leaked from large-scale radiation leak accident like the Fukushima nuclear power plant accident or nuclear explosions can cause to the very large damage for us. So that the damage can be minimized, we have being developed a detector that can providing information about the location of the source to remove dangerous substances quickly than the conventional single detector. In this paper, we designed and implemented the radiation shield and the collimator for the development of the stereo radiation detector to detect contamination things using MCNP Simulation. And we analysed the test results of the radiation shield and collimator using the radiation source. The results of this paper will be used as the basis for improving the efficiency of the stereo radiation detector being studied currently.

  • PDF

Study on the Code System for the Off-Site Consequences Assessment of Severe Nuclear Accident (원전 중대사고 연계 소외결말해석 전산체계에 대한 고찰)

  • Kim, Sora;Min, Byung-Il;Park, Kihyun;Yang, Byung-Mo;Suh, Kyung-Suk
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.4
    • /
    • pp.423-434
    • /
    • 2016
  • The importance of severe nuclear accidents and probabilistic safety assessment (PSA) were brought to international attention with the occurrence of severe nuclear accidents caused by the extreme natural disaster at Fukushima Daiichi nuclear power plant in Japan. In Korea, studies on level 3 PSA had made little progress until recently. The code systems of level 3 PSA, MACCS2 (MELCORE Accident Consequence Code System 2, US), COSYMA (COde SYstem from MAria, EU) and OSCAAR (Off-Site Consequence Analysis code for Atmospheric Releases in reactor accidents, JAPAN), were reviewed in this study, and the disadvantages and limitations of MACCS2 were also analyzed. Experts from Korea and abroad pointed out that the limitations of MACCS2 include the following: MACCS2 cannot simulate multi-unit accidents/release from spent fuel pools, and its atmospheric dispersion is based on a simple Gaussian plume model. Some of these limitations have been improved in the updated versions of MACCS2. The absence of a marine and aquatic dispersion model and the limited simulating range of food-chain and economic models are also important aspects that need to be improved. This paper is expected to be utilized as basic research material for developing a Korean code system for assessing off-site consequences of severe nuclear accidents.

Kindergarten Teachers' Perceptions on Young Children's Safety due to Radioactive Contamination (방사능 오염으로 인한 유아 안전에 대한 유치원 교사의 인식)

  • Yang, Jinhee;Park, Yun;Yeo, Hwayeon
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.3
    • /
    • pp.221-225
    • /
    • 2013
  • The purpose of this study was to examine the impact of the Fukushima nuclear power plant accident of Japan in 2011 on kindergarten teachers' perception on young children's safety due to radioactive contamination. This study analysed the 134 questionnaire forms out of 197 kindergarten teachers in the region of Chungbuk. The findings of the study indicated that the Japanese unclear power plant accident exerted an influence on anxious of kindergarten teachers on young children's safety due to radioactive contamination. In conclusion, kindergarten teacher education are required to improve the safety knowledge of kindergarten teachers and alternative resolution method for young children's safety due to radioactive contamination.

Corium melt researches at VESTA test facility

  • Kim, Hwan Yeol;An, Sang Mo;Jung, Jaehoon;Ha, Kwang Soon;Song, Jin Ho
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1547-1554
    • /
    • 2017
  • VESTA (Verification of Ex-vessel corium STAbilization) and VESTA-S (-small) test facilities were constructed at the Korea Atomic Energy Research Institute in 2010 to perform various corium melt experiments. Since then, several tests have been performed for the verification of an ex-vessel core catcher design for the EU-APR1400. Ablation tests of an impinging $ZrO_2$ melt jet on a sacrificial material were performed to investigate the ablation characteristics. $ZrO_2$ melt in an amount of 65-70 kg was discharged onto a sacrificial material through a well-designed nozzle, after which the ablation depths were measured. Interaction tests between the metallic melt and sacrificial material were performed to investigate the interaction kinetics of the sacrificial material. Two types of melt were used: one is a metallic corium melt with Fe 46%, U 31%, Zr 16%, and Cr 7% (maximum possible content of U and Zr for C-40), and the other is a stainless steel (SUS304) melt. Metallic melt in an amount of 1.5-2.0 kg was delivered onto the sacrificial material, and the ablation depths were measured. Penetration tube failure tests were performed for an APR1400 equipped with 61 in-core instrumentation penetration nozzles and extended tubes at the reactor lower vessel. $ZrO_2$ melt was generated in a melting crucible and delivered down into an interaction crucible where the test specimen is installed. To evaluate the tube ejection mechanism, temperature distributions of the reactor bottom head and in-core instrumentation penetration were measured by a series of thermocouples embedded along the specimen. In addition, lower vessel failure tests for the Fukushima Daiichi nuclear power plant are being performed. As a first step, the configuration of the molten core in the plant was investigated by a melting and solidification experiment. Approximately 5 kg of a mixture, whose composition in terms of weight is $UO_2$ 60%, Zr 10%, $ZrO_2$ 15%, SUS304 14%, and $B_4C$ 1%, was melted in a cold crucible using an induction heating technique.

A Study of the Improvement Plan and Real Condition Estimation of Fire Protection Safety Management for Power Plants in Korea (국내발전소 소방안전관리 운영실태조사 및 개선방안에 관한 연구)

  • Kang, Gil-Soo;Choi, Jae-wook
    • Fire Science and Engineering
    • /
    • v.31 no.2
    • /
    • pp.61-73
    • /
    • 2017
  • The Fukushima Nuclear Disaster in 2011 and California Power Failure in 2001 are examples of the importance of the power plant safety management that caused huge national loss with a power-related mass casualty incident. In a situation where humans cannot live without electricity, efforts to strengthen the systematic firefighting safety management in power plants that produce electricity with large amounts of hazardous materials as fuel, such as nuclear energy, coal and gas, are essential to protect life and prevent property loss and stable economic growth from fire explosion accident or radiation leak due to the negligence of safety management and natural disasters such as earthquakes, which has recently become an issue. This study examined the operating situation of firefighting safety management in power plants with firefighting officials employed by five power generation companies including Korea Southern Power Co., Ltd. and Korea Hydro & Nuclear Power Co. Ltd., which are in charge of the domestic power supply. As a result, for the systematic firefighting safety management of power plants, improvement plans were drawn, including the development of an effective business manual and a comprehensive management system, the substantiality of firefighting safety education, and the strengthening of seismic designs to prepare for earthquakes.

Seismic Performance Evaluation of the Li-Polymer Battery Rack System for Nuclear Power Plant (원자력발전소용 리튬폴리머 배터리 랙 시스템의 내진성능평가)

  • Kim, Si-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.13-19
    • /
    • 2019
  • After the Fukushima nuclear accident, a new power supply using a lithium polymer battery has been proposed the first time in the world as the safety of the emergency battery facility has been required. It is required to have the safety of the rack system in which the battery device is installed in order to apply the proposed technology to the field. Therefore, the purpose of this study is to evaluate the seismic performance of string and rack frame for lithium-polymer battery devices developed for the first time in the world to satisfy 72 hours capacity. (1) The natural frequency of the unit rack system was 9 Hz, and the natural frequency before and after the earthquake load did not change. This means that the connection between members is secured against the design earthquake load. (2) he vibration reduction effect by string design was about 20%. (3) As a result of the seismic performance test under OBE and SSE conditions, the rack frame system was confirmed to be safe. Therefore, the proposed rack system can be applied to the nuclear power plant because the rack system has been verified structural safety to the required seismic forces.

Study of Soil Erosion for Evaluation of Long-term Behavior of Radionuclides Deposited on Land (육상 침적 방사성 핵종의 장기 거동 평가를 위한 토사 침식 연구)

  • Min, Byung-Il;Yang, Byung-Mo;Kim, Jiyoon;Park, Kihyun;Kim, Sora;Lee, Jung Lyul;Suh, Kyung-Suk
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.1
    • /
    • pp.1-13
    • /
    • 2019
  • The accident at the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) resulted in the deposition of large quantities of radionuclides over parts of eastern Japan. Radioactive contaminants have been observed over a large area including forests, cities, rivers and lakes. Due to the strong adsorption of radioactive cesium by soil particles, radioactive cesium migrates with the eroded soil, follows the surface flow paths, and is delivered downstream of population-rich regions and eventually to coastal areas. In this study, we developed a model to simulate the transport of contaminated sediment in a watershed hydrological system and this model was compared with observation data from eroded soil observation instruments located at the Korea Atomic Energy Research Institute. Two methods were applied to analyze the soil particle size distribution of the collected soil samples, including standardized sieve analysis and image analysis methods. Numerical models were developed to simulate the movement of soil along with actual rainfall considering initial saturation, rainfall infiltration, multilayer and rain splash. In the 2019 study, a numerical model will be used to add rainfall shield effect by trees, evaporation effect and shield effects of surface water. An eroded soil observation instrument has been installed near the Wolsong nuclear power plant since 2018 and observation data are being continuously collected. Based on these observations data, we will develop the numerical model to analyze long-term behavior of radionuclides on land as they move from land to rivers, lakes and coastal areas.

Comparison of Perception Differences About Nuclear Energy in 4 East Asian Country Students: Aiming at $10^{th}$ Grade Students who Participated in Scientific Camps, from Four East Asian Countries: Korea, Japan, Taiwan, and Singapore (동아시아 4개국 학생들의 핵에너지에 대한 인식 비교: 과학캠프에 참가한 한국, 일본, 대만, 싱가포르 10학년 학생들을 대상으로)

  • Lee, Hyeong-Jae;Park, Sang-Tae
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.4
    • /
    • pp.775-788
    • /
    • 2012
  • This study was done at a scientific camp sponsored by Nara Women's University Secondary School, Japan. In this school, $10^{th}$ grade students from 4 East Asian countries: Korea, Japan, Taiwan, and Singapore, participated. We made a research on students' perceptions about nuclear energy. Sample populations include 77 students in total, with 12 Korean, 46 Japanese, 9 Taiwanese and 10 Singaporean students. Overall perceptions comparison about nuclear energy shows average values from the order of highest Korea, Taiwan, Singapore, and to lowest, Japan. We implemented a T-test to identify perception differences about nuclear energy, with one group that include 3 countries (Korea, Taiwan and Singapore) and another group that includes all the Japanese students. T-test results of perceptions about nuclear energy shows students from the 3 countries of Korea, Taiwan and Singapore having higher average than Japanese students. (p<.05). Korean average scores regarding overall perceptions about nuclear energy show as the highest in all 4 East Asian countries and also highest in all subcategories. On the contrary in Japan, they have lower and negative perceptions of nuclear energy. In spite of these facts, perceptions of Japanese students about nuclear energy seem lowest and negative mainly because of the recent Fukushima nuclear power plant disaster, caused by the tsunami and its subsequent damages and fears of radiation leaks, etc. This shows that negative information about future disasters and its resulting damages like the Chernobyl nuclear accident could influence more on people's risk perception than general information like nuclear energy-related technologies or the news that the plant is operating normally, etc. Even if the possibility of this kind of accident is very low, just one accident could bring abnormal risks to technology itself. This strong signal makes negative image and strengthens its perceptions to the people. This could bring a stigma about nuclear energy. This study shows that Government's policy about the highest priority for nuclear energy safety is most important. As long as such perception and decision are fixed, we found that it might not be easy to get changed again because they were already fortified and maintained.