• Title/Summary/Keyword: Fujii

Search Result 129, Processing Time 0.025 seconds

A servo design method for MIMO Wiener systems with nonlinear uncertainty

  • Kim, Sang-Hoon;Kunimatsu, Sadaaki;Fujii, Takao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1960-1965
    • /
    • 2005
  • This paper presents theory for stability analysis and design of a servo system for a MIMO Wiener system with nonlinear uncertainty. The Wiener system consists of a linear time-invariant system(LTI) in cascade with a static nonlinear part ${\psi}$(y) at the output. We assume that the uncertain static nonlinear part is sector bounded and decoupled. In this research, we treat the static nonlinear part as multiplicative uncertainty by dividing the nonlinear part ${\psi}$(y) into ${\phi}$(y) := ${\psi}$(y)-y and y, and then we reduce this stabilizing problem to a Lur'e problem. As a result, we show that the servo system with no steady state error for step references can be constructed for the Wiener system.

  • PDF

Bypass, homotopy path and local iteration to compute the stability point

  • Fujii, Fumio;Okazawa, Shigenobu
    • Structural Engineering and Mechanics
    • /
    • v.5 no.5
    • /
    • pp.577-586
    • /
    • 1997
  • In nonlinear finite element stability analysis of structures, the foremost necessary procedure is the computation to precisely locate a singular equilibrium point, at which the instability occurs. The present study describes global and local procedures for the computation of stability points including bifurcation points and limit points. The starting point, at which the procedure will be initiated, may be close to or arbitrarily far away from the target point. It may also be an equilibrium point or non-equilibrium point. Apart from the usual equilibrium path, bypass and homotopy path are proposed as the global path to the stability point. A local iterative method is necessary, when it is inspected that the computed path point is sufficiently close to the stability point.

The Levitation Mass Method: A Precision Mass and Force Measurement Technique

  • Fujii, Yusaku
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.46-50
    • /
    • 2008
  • The present status and future prospects of the levitation mass method (LMM), a technique for precision mass and force measurement, are reviewed. In the LMM, the inertial force of a mass levitated using a pneumatic linear bearing is used as the reference force applied to the objects being tested, such as force transducers, materials, or structures. The inertial force of the levitated mass is measured using an optical interferometer. We have modified this technique for dynamic force calibration of impact, oscillation, and step loads. We have also applied the LMM to material testing, providing methods for evaluating material viscoelasticity under an oscillating or impact load, evaluating material friction, evaluating the biomechanics of a human hand, and generating and measuring micro-Newton-level forces.

Structural Analysis of a Cavitary Region Created by Femtosecond Laser Process

  • Fujii, Takaaki;Goya, Kenji;Watanabe, Kazuhiro
    • Journal of Power System Engineering
    • /
    • v.19 no.3
    • /
    • pp.5-10
    • /
    • 2015
  • Femtosecond laser machining has been applied for creating a sensor function in silica glass optical fibers. Femtosecond laser pulses make it possible to fabricate micro structures in processed regions of a very thin glass fiber line because femtosecond laser pulses can extremely minimize thermal effects. With the laser machining to optical fiber using a single shot of 210-fs laser at a wavelength of 800 nm, it was observed that a processed region surrounded a thin layer which seemed to be a hollow cavity monitored by scanning electron microscopy (SEM). This study aims at a theoretical investigation for the processed region by using a numerical analysis in order to embed sensing function to optical fibers. Numerical methods based finite element method (FEM) has been used for an optical waveguide modeling. This report suggests two types modeling and describes a comparative study on optical losses obtained by the experiment and the numerical analysis.

Effect of Train Shape on a Compression Wave Generated by a Train Moving into a Tunnel

  • Ogawa Takanobu;Fujii Kozo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.04a
    • /
    • pp.30-36
    • /
    • 1995
  • An axisymmetric flow induced by a train moving into a tunnel is numerically simulated. The effect of train shape on wavefront of a compression wave created by a train is investigated parametrically using several model trains having the same nose shape but different blockage. The zonal method combined with the Fortified Solution Algorithm (FSA) is employed as a numerical algorithm to solve this moving body problem. The computational result is compared with the experimental data. Good agreement is obtained, which justifies the present computational approach. The compression waves created by the model trains are compared and the result shows that the pressure gradient of the wavefront of the compression wave becomes small in the case of small blockage even though the nose shape is same. The wavefront is not determined solely by the cross-sectional area distribution of the train nose.

  • PDF

Aerodynamics of High Speed Trains Passing by Each Other

  • FUJII Kozo;OGAWA Takanobu
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.04a
    • /
    • pp.5-29
    • /
    • 1995
  • A three-dimensional flow field induced by two trains passing by each other inside a tunnel is studied based on the numerical simulation of the three-dimensional compressible Euler/Navier-Stokes equations formulated in the finite difference approximation. Domain decomposition method with the FSA(fortified solution algorithm) interface scheme is used to treat this moving-body problem. The computed resluts show basic characteristic of the flow field created when two trains passing by each other. History of the pressure distributions and the aerodynamic forces acting on the trains are mailnly discussed. The results indicate that the phenomenon is complicated due to the interaction of the flow induced by two trains. Strong side force occurs between the two trains when the front portion of the opposite train passes by. It fluctuates rapidly and maximum suction force occurs when two trains are aligned side by side. The results also indicate the effectiveness of the present numerical method for moving boundary problems.

  • PDF

Visualization for Fluid Dynamics Education

  • Fujii Kozo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.04a
    • /
    • pp.38-43
    • /
    • 1995
  • Effect of visualization as a tool for the education of fluid dynamics is mainly discussed. Visualized images are much more understandable compared to the explanation using equations and texts. Several examples are presented to clarify this statement. Then, the software system for teaching fluid dynamics using the results by the numerical simulation is discussed. Two important issues on what is needed in the system are given. First, such systems should be capable of animating images. Second, such systems should be interactively used by students. Changing parameters, coefficients, equations, etc. themselves and watching the difference are important for them to understand the nature of physics underlying the equations. The teaching system with visualization is no doubt a good tool for introducing fluid dynamics.

  • PDF

3D SCENE EDITING BY RAY-SPACE PROCESSING

  • Lv, Lei;Yendo, Tomohiro;Tanimoto, Masayuki;Fujii, Toshiaki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.732-736
    • /
    • 2009
  • In this paper we focus on EPI (Epipolar-Plane Image), the horizontal cross section of Ray-Space, and we propose a novel method that chooses objects we want and edits scenes by using multi-view images. On the EPI acquired by camera arrays uniformly distributed along a line, all the objects are represented as straight lines, and the slope of straight lines are decided by the distance between objects and camera plane. Detecting a straight line of a specific slope and removing it mean that an object in a specific depth has been detected and removed. So we propose a scheme to make a layer of a specific slope compete with other layers instead of extracting layers sequentially from front to back. This enables an effective removal of obstacles, object manipulation and a clearer 3D scene with what we want to see will be made.

  • PDF

Automatic Turn-off Angle Control for High Speed SRM Drives

  • Nashed Maged N.F.;Ohyama Kazuhiro;Aso Kenichi;Fujii Hiroaki;Uehara Hitoshi
    • Journal of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.81-88
    • /
    • 2007
  • This paper presents a new approach to the automatic control of the turn-off angle used to excite the Switched Reluctance Motor (SRM) employed in electric vehicles (EV). The controller selects the turn-off angle that supports and improves the performance of the motor drive system. This control scheme consisting of classical current control and speed control depends on a lookup table to take the best result of the motor. The turn-on angle of the main switches of the inverter is fixed at $0^{\circ}C$ and the turn-off angle is variable depending on the reference speed. The motor, inverter and control system are modeled in Simulink to demonstrate the operation of the system.

A Method for Surface Reconstruction and Synthesizing Intermediate Images for Multi-viewpoint 3-D Displays

  • Fujii, Mahito;Ito, Takayuki;Miyake, Sei
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1996.06b
    • /
    • pp.35-40
    • /
    • 1996
  • In this paper, a method for 3-D surface reconstruction with two real cameras is presented. The method, which combines the extraction of binocular disparity and its interpolation can be applied to the synthesis of images from virtual viewpoints. The synthesized virtual images are as natural as the real images even when we observe the images as stereoscopic images. The method opens up many applications, such as synthesizing input images for multi-viewpoint 3-D displays, enhancing the depth impression in 2-D images and so on. We also have developed a video-rate stereo machine able to obtain binocular disparity in 1/30 sec with two cameras. We show the performance of the machine.

  • PDF