• Title/Summary/Keyword: Fuel-N

Search Result 960, Processing Time 0.026 seconds

Synthesis and Characterization of Mono-sulfonated Poly(ether sulfone) for a Fuel Cell Application (고분자 전해질 연료전지용 Sulfonated Poly(ether sulfone)의 합성 및 특성 평가)

  • Krishnan N.N.;Kim H.-J.;Prasanna M.;Cho E.-A.;Oh I.-H.;Hong S.-A.;Lim T.-H.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.235-238
    • /
    • 2005
  • Sulfonated poly(ether sulfone) copolymers (PESs) were synthesized using hydroquinone 2-potassium sulfonate (HPS) with other monomers (bisphenol A and 4-fluorophenyl sulfone). PESs with different $mole\%$ of hydrophilic group were prepared by changing the mole ratio of HPS in the polymerization reaction. The chemical structure and the thermal stability of these polymers were characterized by using $^1H-NMR$, FT-IR and TGA techniques. The PES 60 membrane, which has $60 mole\%$ of HPS unit in the polymer backbone, has a proton conductivity of 0.091 S/cm and good insolubility in boiling water. The TGA showed that PES 60 was stable up to $272^{\circ}C$ with a char yield of about $29\%\;at\;900^{\circ}C\;under\;N_2$ atmosphere. To investigate the single cell performance, the catalyst coated PES 60 membrane was used and a single cell test was carried out using $H_2/O_2$ gases as fuel and oxidant at various temperatures. We observed that the cell performance was enhanced by increasing the cell temperature. A current density of $1400 mA/cm^2$ at 0.60 V was obtained at $70^{\circ}C$.

  • PDF

Selection of the Best Oxygen Carrier for Chemical Looping Combustion in a Bubbling Fluidized Bed Reactor (기포유동층에서 케미컬루핑 연소시스템을 위한 최적 산소전달입자 선정)

  • Kim, Hana;Kim, Jung-Hwan;Yoon, Joo-Young;Lee, Doyeon;Baek, Jeom-In;Ryu, Ho-Jung
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.63-69
    • /
    • 2018
  • The reduction reaction characteristics and physicochemical properties were studied for the selection of oxygen carrier, which is the core of the chemical looping combustion (CLC) technology. Fuel conversion and $CO_2$ selectivity of oxygen carrier according to the concentration of reducing gas and the reduction temperature using three kinds of oxygen carrier (SDN70, N018-R2, N016-R4) were measured and compared. In addition, Attrition Index (AI) and BET surface area were measured to analyze the attrition resistance and the surface characteristics of the oxygen carrier. As a result, it was confirmed that all three kinds of oxygen carrier were suitable for use in chemical roofing combustion system, and the best particle was determined to be N016-R4.

Ammonia Dual Fuel Approaches with Gasoline and Diesel in the Internal Combustion Engines (가솔린 및 디젤 엔진에서의 암모니아 이중연료 적용 연구)

  • Wooe, Y.;Jang, J.Y.;Lee, Y.J.;Kim, J.N.
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.273-275
    • /
    • 2014
  • An ammonia fuel system is developed and applied to both a spark ignition engine and a compression ignition engine to use ammonia as primary fuel in this study. Ammonia is injected separately into the intake manifold in liquid phase while gasoline or diesel is also injected as secondary fuel. As ammonia burns 1/6 time slower than gasoline or diesel, the spark or diesel injection timing is needed to be advanced to have better combustion phasing. The test engine showed quite high variation in the power output with large amount of ammonia. The final goal of the study is to implement a methodology to ignite ammonia-air mixture and have complete combustion without any use of the conventional fuels.

  • PDF

CONTROL STRATEGY OF ELECTRIC COOLANT PUMPS FOR FUEL ECONOMY IMPROVEMENT

  • CHO H.;JUNG D.;ASSANIS D. N.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.269-275
    • /
    • 2005
  • The engine cooling system for a medium duty V6, 4.5 L diesel engine was modeled with a commercial code, GT-Cool in order to investigate the effect of controllable electric pump on the cooling performance and the fuel economy. The simulation results of the cooling system model with mechanical coolant pump were validated with experimental data. Two different types of electric pumps were implemented into the cooling system model and PID control for electric pump operation was incorporated into the simulation study. Based on the simulation result with electric pump, conventional thermostat hysteresis was modified to reduce pump operation for additional improvement of fuel economy, and then the benefit of electric pumps with modified thermostat hysteresis on fuel economy was demonstrated with the simulation. The predicted result indicates that the cooling system with electric pump and modified thermostat hysteresis can reduce pump power consumption by more than $99\%$ during the FTP 74 driving cycle.

Performance of a Ceramic Fiber Reinforced Polymer Membrane as Electrolyte in Direct Methanol Fuel Cell

  • Nair, Balagopal N.;Yoshikawa, Daishi;Taguchi, Hisatomi
    • Membrane Journal
    • /
    • v.14 no.1
    • /
    • pp.53-56
    • /
    • 2004
  • Direct Methanol Fuel Cell (DMFC) is considered as a candidate technology for applications in stationary, transportation as well as electronic power generation purposes. To develop a high performance direct methanol fuel cell(DMFC), a competent electrolyte membrane is needed. The electrolyte membrane should be durable and methanol crossover must be low. One of the approaches to increase the stability of generally used polymer electrolyte membranes such as Nafion against swelling or thermal degradation is to bond it with an inorganic material physically or chemically. In Noritake Company, we have developed a novel method of reinforcing the polymer electrolyte matrix with inorganic fibers. Methanol crossover values measured were significantly lower than the original polymer electrolyte membranes. These fiber reinforced electrolyte membranes (FREM) were used for DMFC study and stable power output values as high 160 mW/$\textrm{cm}^2$ were measured. The details of the characteristics of the membranes as well as I-V data of fuel cell stacks are detailed in the paper.

The System of Plasma Ignition for Coal-Dust and Water-Coal Fuels Ignition

  • Park, Hyun-Seo;I. M. Zasypkin;A. N. Timoshevskii
    • Resources Recycling
    • /
    • v.12 no.2
    • /
    • pp.54-61
    • /
    • 2003
  • In this paper a system of plasma ignition(SPI) which is applied for the ignition and stabilization of coal-dust fuel burning for decreasing fuel black oil consumption is described. The advantages of SPI are demonstrated, and the positive results of SPI which is operated at the thermal-clamping boilers installed in production and heating plants are described. The similar system was tested in demonstration and industrial installations to confirm the results. The improvement of economical, operating and ecological performances of the boiler are shown.

An Experimental Investigation on Oxy-fuel Combustion with a Coaxial Burner (동축 버너를 이용한 순산소 연소특성에 관한 실험적 연구)

  • Cho, Ju-Hyeong;Choi, Won-Seok;Kim, Han-Seok;Ahn, Kook-Young
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2175-2180
    • /
    • 2008
  • Oxy-fuel combustion has been gaining its significance as a means of migrating the green house effects. Some experimental measurements were conducted to investigate the characteristics of oxy-fuel combustion and to aid a fundamental design of a lab-scale oxy-fuel combustor with a coaxial burner. CO emission was measured along the combustor centerline while combustion of methane and oxygen diluted by CO2 took place. Substitution of CO2 with N2 indicates a possibility that some CO is formed by dissociation of CO2. Some parametric tests were also performed to see the mixing effects of reactant gases on CO emission by changing the gas injection velocity at the burner nozzles with various heat loads. The overall results indicate that CO emission was reduced when the reactants are injected at higher velocities of similar magnitude.

  • PDF

Mach 6 Tests of Scramjet Engine with Boundary-Layer Bleeding and Two-Staged Injection

  • Kodera, Masatoshi;Tomioka, Sadatake;Kobayashi, Kan;Kanda, Takeshi;Mitani, Tohru
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.26-33
    • /
    • 2004
  • In this study, a boundary-layer bleeding and a two-staged fuel injection were applied to a scramjet engine for suppressing unstart transition and improving the thrust performance under Mach 6 flight conditions. With the boundary-layer bleeding, the engine could operate without unstart transition around at the fuel equivalence ratio of unity ($\Phi$ = 1). The thrust increment from the no fuel condition (dF) increased to 2460 N, which was about 1.4 times as large as that of the case without the bleeding and maximum in our Mach 6 tests. It was confirmed that the boundary-layer bleeding suppressed the separation during the engine operation. The two-staged fuel injection was less effective for improving the thrust performance com-pared with the single-staged one with the bleeding at Mach 6.

  • PDF

The Biomass Pre-treatment Effect on the Combustion Characteristics of Coal and Biomass Blends (바이오매스 전처리 기술에 따른 혼소 특성에 관한 실험적 연구)

  • KIM, JONG-HO;PARK, KYEONG-HOON;KIM, GYEONG-MIN;PARK, KYEONG-WON;JEONG, TAE-YONG;LEE, YOUNG-JOO;JEON, CHUNG-HWAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.1
    • /
    • pp.81-89
    • /
    • 2018
  • Fuel blend technique is one of the most effective way of using biomass to replace the coal. Many studies on combustion characteristics with coal and biomass blends have been conducted. In this study, char reactivity and emission characteristics of coal (Suek) and biomass (EFB) blends has been investigated by TGA and DTF to evaluate the applicability of the pre-treated (torrefaction, ash removal technology) EFB to pulverized coal boiler. In all blending cases, char reactivity improved as the blending ratio increases (10, 20, and 30%), especially torrefied EFB blended at 30%. Also, unburned carbon decreased as the blending ratio increases in all types of EFB. NOx emission showed the increase and decrease characteristics according to the content of fuel-N of raw EFB and torrefied EFB. But the amount of NOx emission at ashless EFB blends is greater than that of Suek despite of lower fuel-N. It indicated that co-firing effect of using the pretreatment biomass fuel is relatively better than those of the untreated biomass fuel about char reactivity and emission characteristics.

MECHANICAL AND IRRADIATION PROPERTIES OF ZIRCONIUM ALLOYS IRRADIATED IN HANARO

  • Kwon, Oh-Hyun;Eom, Kyong-Bo;Kim, Jae-Ik;Suh, Jung-Min;Jeon, Kyeong-Lak
    • Nuclear Engineering and Technology
    • /
    • v.43 no.1
    • /
    • pp.19-24
    • /
    • 2011
  • These experimental studies are carried out to build a database for analyzing fuel performance in nuclear power plants. In particular, this study focuses on the mechanical and irradiation properties of three kinds of zirconium alloy (Alloy A, Alloy B and Alloy C) irradiated in the HANARO (High-flux Advanced Neutron Application Reactor), one of the leading multipurpose research reactors in the world. Yield strength and ultimate tensile strength were measured to determine the mechanical properties before and after irradiation, while irradiation growth was measured for the irradiation properties. The samples for irradiation testing are classified by texture. For the irradiation condition, all samples were wrapped into the capsule (07M-13N) and irradiated in the HANARO for about 100 days (E > 1.0 MeV, $1.1{\times}10^{21}\;n/cm^2$). These tests and results indicate that the mechanical properties of zirconium alloys are similar whether unirradiated or irradiated. Alloy B has shown the highest yield strength and tensile strength properties compared to other alloys in irradiated condition. Even though each of the zirconium alloys has a different alloying content, this content does not seem to affect the mechanical properties under an unirradiated condition and low fluence. And all the alloys have shown the tendency to increase in yield strength and ultimate tensile strength. Transverse specimens of each of the zirconium alloys have a slightly lower irradiation growth tendency than longitudinal specimens. However, for clear analysis of texture effects, further testing under higher irradiation conditions is needed.