• Title/Summary/Keyword: Fuel-C

Search Result 2,841, Processing Time 0.025 seconds

Operating Characteristics of Advanced 500W class Anode-supported Flat Tubular SOFC stack in KIER (500W 급 연료극 지지체 평관형 고체산화물연료전지 스택의 운전 특성)

  • Lim, Tak-Hyoung;Kim, Gwan-Yeong;Park, Jae-Layng;Song, Rak-Hyun;Lee, Seung-Bok;Shin, Dong-Ryul
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2007.11a
    • /
    • pp.193-198
    • /
    • 2007
  • KIER has been developing the anode supported flat tubular SOFC stack for the intermediate temperature $(700{\sim}800^{\circ}C)$ operation. for this purpose, we have first fabricated anode supported flat tubular cells by the optimization between the current collecting method and the induction brazing process. After that we designed the compact fuel & air manifold by adopting the simulation technique to uniformly supply fuel & air gas and the unique seal & insulation method to make the more compact stack. For making stack, the prepared anode-supported flat tubular cells with effective electrode area of $90cm^2$ of connected in series with 12 modules, in which one module consists of two cells connected in parallel. The performance of stack in 3 % humidified $H_2$ and air at $800^{\circ}C$ shows maximum power of 507 W. Through these experiments, we obtained basic & advanced technology of the anode-supported flat tubular cell and established the proprietary concept of the anode-supported flat tubular SOFC stack in KIER.

  • PDF

Development of Two-layer Electrode for Direct Methanol Fuel Cell (직접 메탄올 연료전지의 이층막 전극 개발)

  • Jung, Doo-Hwan;Hong, Seong-Hwa;Peck, Dong-Hyun;Song, Rak-Hyun;Shin, Dong-Ryul;Kim, Hyuk-Nyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.68-71
    • /
    • 2003
  • The performance of the Direct Methanol Fuel Cell (DMFC) using multi-layer electrode, which prepared by various anode catalysts and Nafion membranes, was studied for reducing the amount of the metal catalyst loaded in the MEA system. The amount of the catalyst used in this experiment was $3-4 mg/cm^2$ in cathode and $1-2 mg/cm^2$ in anode, respectively. The best performance was to be $230 mS/cm^2$ of MEA3 at $90^{\circ}C$ and 2 bar in this experiment. However, the overall performance of the DMFC was maintained almost the same compared to the general commercial catalyst systems.

Fuel Qualities and Combustion Characteristics of Animal-Fats Biodiesel for Agricultural Hot Air Heaters

  • Kim, Youngjung;Park, Seokho;Kim, Youngjin;Kim, Chungkil
    • Journal of Biosystems Engineering
    • /
    • v.37 no.5
    • /
    • pp.296-301
    • /
    • 2012
  • Purpose: Combustion and fuel qualities of the animal-fats biodiesel as a heating fuel for agricultural hot air heater were studied. Methods: Biodiesel (BD) was made from animal-fats by reacting with methanol and potassium hydroxide in the laboratory. The biodiesel made in the laboratory was tested for fuel and combustion qualities. Results: The kinematic viscosity and the calorific values of the biodiesels were measured. Kerosene based biodiesel, BD20 (K) showed 18 cSt at $-20^{\circ}C$. It seemed that BD100 was not suitable for a heating fuel under some temperature. As BD content increased, the calorific value decreased up to 40,000 J/g for BD100, while the calorific value of light oil was 45,567 J/g showing difference of 5,567 J/g, about 12% difference. Several different fuels including BD20 (biodiesel 20% + light oil 80%), BD50 (biodiesel 50% + light oil 50%), BD100 (biodiesel 100%), and light oil were tested for fuel combustion qualities for agricultural hot air heater, and their combustion performances were compared and analyzed. Flame dimensions of biodiesels and light oils were almost the same shape at the same combustion condition. Generally, the $CO_2$ amounts of BDs were greater than light oil. However, in this study the differences were minor, so there was no significant difference existed between the BDs combustion and light oil. Conclusions: It seemed that quality was good for heating oil for agricultural hot air heater because of showing no barriers for continuous combustion and proper exhaust gas temperature and $CO_2$ amount discharged. But, for fuel fluidity for higher BD content fuel could be a detrimental problem in situations where the outdoor temperature is lowered. As BD content increased, calorific value decreased up to 40,000 J/g for BD100. Calorific value difference between BD20 and light oil was about 1,360 J/g.

A Study on Manufacturing Standards for Solid Type Fuel Additive (고체 연료첨가제 제조 기준 설정을 위한 연구)

  • Lee, Eui-Sang;Oh, Se-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.6
    • /
    • pp.1292-1297
    • /
    • 2009
  • This study was performed to investigate solubility, dissolution rate and ash content of solid type fuel additive in gasoline and diesel in order to set up manufacturing standards. From the results, the unfiltered impurities were increased when the fuel additive was added on gasoline and diesel. Also, the unfiltered fuel additive was decreased with respect to increasing the pore size of the filter paper. When one gram of the fuel additive was dissolved in one liter of gasoline at room temperature, the best dissolution rate was about 2 hours. But, almost nothing was dissolved in diesel during 72 hours at $20^{\circ}C$ below zero. At the experiment of ash content, the gasoline which the fuel additive was melted in was showing 28 times more ash content than that was not including the fuel additive. Therefore, it seemed that almost all of ash content was caused by the fuel additive.

Evaluation of Properties and Fabrication of Tubular Supports Segmented-in-Series Solid Oxide Fuel Cell (SOFC) (세그먼트 SOFC 관형 세라믹 지지체의 제작 및 특성 평가)

  • Yun, Ui-Jin;Lee, Jong-Won;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Song, Rak-Hyun;Shin, Dong-Ryul;Han, Kyoo-Seung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.3
    • /
    • pp.214-219
    • /
    • 2010
  • In this study, we fabricated tubular ceramic support for segmented-in-series solid oxide fuel cell (SOFC) by using CSZ(CaO-stabilized $ZrO_2$) as main material and activated carbon as pore former. Thermal expansion properties of ceramic support with different amounts of activated carbon were analyzed by using dilatometer to decide a suitable sintering temperature. The tubular ceramic supports with different amounts of activated carbon (5, 10, 15wt.%) were fabricated by the extrusion technique. After sintering at $1100^{\circ}C$ and $1400^{\circ}C$ for 5h., cross section and surface morphology of tubular ceramic support were analyzed by using SEM image. Also, the porosity, mechanical property, gas permeability of tubular ceramic supports was measured. Based on these results, we established the suitable fabrication technique of tubular ceramic support for segmented-in-series SOFC.

Characteristics of NaOH-Activated Carbon Nanofiber as a Support of the Anode Catalyst for Direct Methanol Fuel Cell (NaOH 활성화된 탄소나노섬유의 직접 메탄올 연료전지용 연료극 촉매의 담지체로서의 특성 고찰)

  • Shin, Jung-Hee;Lim, Seong-Yop;Kim, Sang-Kyung;Peck, Dong-Hyun;Lee, Bung-Rok;Jung, Doo-Hwan
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.769-774
    • /
    • 2011
  • Porous carbon nanofibers(CNF) were synthesized via NaOH activation at 700~$900^{\circ}C$, and the porous CNF-supported PtRu catalysts were evaluated for the anode in direct methanol fuel cells. The change of surface characteristics by NaOH activation was examined by analyses of the specific surface area and pore size distribution. The morphological and structural modification was investigated under scanning electron microscopy. The activity of catalysts supported on porous CNFs was examined by cyclic voltammograms and single cell tests. The pore formation on CNF by the NaOH activation was discussed, concerning the catalyst activity, when they were applied as catalyst supports.

A Study on Sintering Inhibition of La0.8Sr0.2MnO3- Cathode Material for Cathode-Supported Fuel Cells

  • Ahmed, Bilal;Lee, Seung-Bok;Song, Rak-Hyun;Lee, Jong-Won;Lim, Tak-Hyoung;Park, Seok-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.494-499
    • /
    • 2016
  • In this work, the effects of different sintering inhibitors added to $La_{0.8}Sr_{0.2}MnO_{3-{\partial}}$ (LSM) were studied to obtain an optimum cathode material for cathode-supported type of Solid oxide fuel cell (SOFC) in terms of phase stability, mechanical strength, electric conductivity and porosity. Four different sintering inhibitors of $Al_2O_3$, $CeO_2$, NiO and gadolinium doped ceria (GDC) were mixed with LSM powder, sintered at $1300^{\circ}C$ and then they were evaluated. The phase stability, sintering behavior, electrical conductivity, mechanical strength and microstructure were evaluated in order to assess the performance of the mixture powder as cathode support material. It has been found that the addition of $Al_2O_3$ undesirably decreased the electrical conductivity of LSM; other sintering inhibitors, however, showed sufficient levels of electrical conductivity. GDC and NiO addition showed a promising increase in mechanical strength of the LSM material, which is one of the basic requirements in cathode-supported designs of fuel cells. However, NiO showed a high reactivity with LSM during high temperature ($1300^{\circ}C$) sintering. So, this study concluded that GDC is a potential candidate for use as a sintering inhibitor for high temperature sintering of cathode materials.

Structural Analysis of Petroleum Fractions by Near-Infrared and $^{13}C$-NMR Spectroscopy (근적외선과 $^{13}C$-핵자기 공명 분광학에 의한 석유유분 구조분석)

  • Choi, Ju-Hwan;Kim, Hai-Dong;Choi, Young-Sang
    • Analytical Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.168-178
    • /
    • 1996
  • Molecular structures of petroleum fractions(diesel fuel, bunker-C oil, lubricant base stocks) have been analyzed and compared in terms of the compositions (aromatics, naphtherucs, paraffinics), aromatics(benzene-nuclear and bonded alkyl groups), C2(methylene) carbon atoms % $C_{\alpha}$ and $C_{\beta}$ carbon stom % in alkyl groups and paraffins(branched and normal) by near-infrared and $^{13}C$-NMR spectroscopy.

  • PDF

Electrochemical Evaluation and Synthesis of Pt/C and PtCo/C Catalysts for the Cathode of PEMFC (PEMFC용 캐소드를 위한 Pt/C, PtCo/C 촉매제조 및 전기화학평가)

  • Kim, Jin-Hwan;Ryu, Ho-Jin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.4
    • /
    • pp.45-49
    • /
    • 2008
  • For the commercialization of polymer electrolyte membrane fuel cell (PEMFC), some serious problems such as the decrease of platinum use as catalysts and a larger overpotential of oxygen reduction reaction (ORR) at cathode must be solved. In this study, 20%Pt/C and 20%PtCo/C catalysts for the cathode of PEMFC were synthesized from the chemical reduction method and evaluated using an electrochemical measurement. The ORR activity of synthesized 20%Pt/C and 20%PtCo/C had higher than that of the 20%Pt/C on the market. The synthesized 20%PtCo/C with the cobalt concentration (Pt:Co atomic ratio) from 5 to 20% showed the highest ORR activity.

  • PDF

Point defects and grain boundary effects on tensile strength of 3C-SiC studied by molecular dynamics simulations

  • Li, Yingying;Li, Yan;Xiao, Wei
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.769-775
    • /
    • 2019
  • The tensile strength of irradiated 3C-SiC, SiC with artificial point defects, SiC with symmetric tilt grain boundaries (GBs), irradiated SiC with GBs are investigated using molecular dynamics simulations at 300 K. For an irradiated SiC sample, the tensile strength decreases with the increase of irradiation dose. The Young's modulus decreases with the increase of irradiation dose which agrees well with experiment and simulation data. For artificial point defects, the designed point defects dramatically decrease the tensile strength of SiC at low concentration. Among the point defects studied in this work, the vacancies drop the strength the most seriously. SiC symmetric tilt GBs decrease the tensile strength of pure SiC. Under irradiated condition, the tensile strengths of all SiC samples with grain boundaries decrease and converge to certain value because the structures become amorphous and the grain boundaries disappear after high dose irradiation.