• Title/Summary/Keyword: Fuel-C

Search Result 2,841, Processing Time 0.03 seconds

Distribution of CO2 produced from fossil fuel by accelerator mass spectrometry: in Daejeon (가속기 질량분석법에 의한 화석연료 기원 이산화탄소의 농도 분포: 대전지역을 중심으로)

  • Park, Junghun;Hong, Wan;Park, Ji Youn;Sung, Ki Seok;Eum, Chul-Hun
    • Analytical Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.9-13
    • /
    • 2008
  • We have collected a batch of leaf samples at several main crossroads in Daejeon and a background site to obtain distribution of $CO_2$ (greenhouse gas) due to fossil fuel combustion. The leaf samples were treated with AAA method and ${\Delta}^{14}C$ values of them were measured using AMS. ${\Delta}^{14}C$ values of downtown sites were found to be lower by 27-102 ‰ than that of the background site, and the ratio of $CO_2$ originated from fossil fuel combustion in the atmosphere of Daejeon could be calculated from the differences of ${\Delta}^{14}C$ values. The average ${\Delta}^{14}C$ of the background site, around Kyeryong mountain, was measured to be $35{\pm}8$ ‰, and this value is lower than 66.3 ‰, which have been known as the backgdound values in USA.

A Study on the CVD Deposition for SiC-TRISO Coated Fuel Material Fabrication (화학증착법을 이용한 삼중 코팅 핵연료 제조에 관한 연구)

  • Kim, Jun-Gyu;Kum, E-Sul;Choi, Doo-Jin;Kim, Sung-Soon;Lee, Hong-Lim;Lee, Young-Woo;Park, Ji-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.3 s.298
    • /
    • pp.169-174
    • /
    • 2007
  • TRISO coated fuel particle is one of the most important materials for hydrogen production using HTGR (high temperature gas cooled reactors). It is composed of three isotropic layers: inner pyrolytic carbon (IPyC), silicon carbide (SiC), outer pyrolytic carbon (OPyC) layers. In this study, TRISO coated fuel particle layers were deposited through CVD process in a horizontal hot wall deposition system. Also the computational simulations of input gas velocity, temperature profile and pressure in the reaction chamber were conducted with varying process variable (i.e temperature and input gas ratios). As deposition temperature increased, microstructure, chemical composition and growth behavior changed and deposition rate increased. The simulation showed that the change of reactant states affected growth rate at each position of the susceptor. The experimental results showed a close correlation with the simulation results.

Preparation of Electrode Using Ni-PTFE Composite Plating for Alkaline Fuel Cell (Ni-PTFE 복합도금기술을 이용한 알칼리형 연료전지용 전극 제조)

  • Kim, Jae-Ho;Lee, Young-Seak
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.5
    • /
    • pp.361-370
    • /
    • 2009
  • Ni-PTFE composite plated on graphite (C/Ni-PTFE) and PTFE (PTFE/Ni-PTFE) particles were prepared uniformly by electroless composite plating. The conductivity of C/Ni-PTFE particles was 280 S/m higher than 95 S/m of PTFE/Ni-PTFE particles at same composite plating condition (Ni:35~36 wt%, PTFE:8 wt%). The C/Ni-PTFE particles were formed into the C/Ni-PTFE plate using heat treatment at $350^{\circ}C$ under 10~$1000\;kg/cm^2$. The C/Ni-PTFE plate showed 1) high conductivity of $5.7\;{\times}\;10^4\;S/m$ due to the existence of graphite as conducting aid and the formation of 3-dimensional Ni network 2) good gas diffusion caused by various pore volumes (0.01~$100\;{\mu}m$) in the plate. The plate could be useful for an electrode in an alkaline fuel cell (AFC). The current density of C/Ni-PTFE electrode indicated $84\;mA/cm^2$ at 0.3V and it was 3.0 times higher than that of PTFE/Ni-PTFE electrode.

Effect of Carbon Felt Oxidation Methods on the Electrode Performance of Vanadium Redox Flow Battery (탄소펠트의 산화처리 방법이 바나듐 레독스 흐름 전지의 전극 성능에 미치는 영향)

  • Ha, Dal-Yong;Kim, Sang-Kyung;Jung, Doo-Hwan;Lim, Seong-Yop;Peck, Dong-Hyun;Lee, Byung-Rok;Lee, Kwan-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.3
    • /
    • pp.263-270
    • /
    • 2009
  • Carbon felt surface was modified by heat or acid treatment in order to use for the electrode of a redox-flow battery. Polymers on the surface of carbon felt was removed and oxygen-containing functional group was attached after the thermal treatment of carbon felt. Thermal treatment was better for the stability of the carbon structure than the acid treatment. Oxygen-containing functional group on the thermally treated carbon felt at 500$^{\circ}C$ was confirmed by XPS and elementary analysis. BET surface area was increased from nearly zero to 96 $m^2/g$. Thermally treated carbon felt at 500$^{\circ}C$ showed lower activation polarization than the thermally treated carbon felt at 400$^{\circ}C$ and the acid-treated carbon felt in the cyclicvoltammetry and polarization experiments. The thermally treated carbon felts at 400$^{\circ}C$ and 500$^{\circ}C$ and the acid-treated carbon felt was applied for the electrode to prepare vanadium redox flow battery. Voltage efficiencies of charge/discharge were 86.6%, 89.6%, and 96.9% for the thermally treated carbon felts at 400$^{\circ}C$ and 500$^{\circ}C$ and the acid-treated carbon felt, respectively.

Temperature and Heat Split Evaluation of Annular Fuel (이중냉각핵연료 온도 및 열유속 분리 평가)

  • Yang, Yong-Sik;Chun, Tae-Hyun;Shin, Chang-Hwan;Song, Kun-Woo
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2236-2241
    • /
    • 2008
  • The surface heat flux of nuclear fuel rod is the most important factor which can affect safety of reactor and fuel. If fuel rod surface heat flux exceeds the CHF(${\underline{C}}ritical$ ${\underline{H}}eat$ ${\underline{F}}lux$), fuel can be damaged. In case of double cooled annular fuel, which is under developing, contains two coolant channels. Therefore, a generated heat in the fuel pellet can move to inner or outer channel and heat flow direction is decided by both sides heat resistance which varied by dimension and material property change which caused by temperature and irradiation. The new program(called DUO) was developed. For the calculation of surface heat flux, a both sides convection by inner/outer coolant, s gap temperature jump and conduction in the fuel are modeled. Especially, temperature and time dependent fuel dimension and material property change are considered during the iteration. A sample calculation result shows that the DUO program has sufficient performance for annular fuel thermal hydraulics design.

  • PDF

The Characteristics of properties torrefied product according to Food waste and sewage sludge mixing ratio (음식물류폐기물과 하수슬러지 혼합비율에 따른 반탄화 생성물의 연료적 특성비교)

  • Kim, Hyun Sook;Pak, Dae Won
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.264-270
    • /
    • 2016
  • This Study is to into fuel using a torrefation reaction to food waste. When the fuel of only food waste alone, fuel value is was performed at a ratio of sewage sludge constant attempts to prevent low. Mixing ratios of food waste and sewage sludge, 10:0, 8:2, 6:4, 5:5. Regardless mixing ratio, it was possible to confirm that decreases the moisture content of 10% or less at a reaction temperature of $240^{\circ}C$ or higher. As the ratio of the reaction temperature and the sewage sludge is high, the fixed carbon content is increased. It was measured at up to 36%(mixing ratios6:4, reaction temperature $270^{\circ}C$) from the initial 1.1%. From the reaction temperature $240^{\circ}C$ satisfied with 3000Kcal/Kg or more is a SRF criteria shows the calorific value. It was possible to obtain a heating value that is increased from the raw sample approximately sextuple. As reaction temperature is heightened, Van krevelen Diagram moved to the range of Lignite range. It was possible to obtain high fuel ratio and 5,500Kcal/kg or less of a combustility index as the sewage sludge mixing ratio becomes high. Increase the fixed carbon content, than those food waste alone solid fuel into and improved fuel costs, it is necessary to ensure that the quality of the fuel is improved.

Characterization of Sulfonated Ploy(aryl ether sulfone) Membranes Impregnated with Sulfated $ZrO_2$ (Sulfated $ZrO_2$를 함침한 SPAES 연료전지막의 특성 평가)

  • Kim, Mi-Nai;Choi, Young-Woo;Kim, Tae-Young;Lee, Mi-Soon;Kim, Chang-Soo;Yang, Tae-Hyun;Nam, Ki-Seok
    • Membrane Journal
    • /
    • v.21 no.1
    • /
    • pp.30-38
    • /
    • 2011
  • Composite membranes based on sulfonated poly(aryl ether) sulfone (SPAES) with different sulfated zirconia nanoparticles ($s-ZrO_2$) ratio are synthesized and investigated for the improvement of the hydration and the proton conductivity at high temperature and no humidification for fuel cell applications. X-ray diffraction technique is employed to characterize the structure and the size of $s-ZrO_2$ nanoparticles. The sulfation effect of $s-ZrO_2$ nanoparticles is verified by FT-IR analysis. The properties of the SPAES composite membranes with the various $s-ZrO_2$ ratio are evaluated by ion exchange capacity and water content. The proton conductivities of the composite membranes are estimated at room temperature with full hydration and at the various high temperature without external humidification. The composite membrane with 5 wt% $s-ZrO_2$ shows the highest proton conductivity. The proton conductivities are $0.9292\;S\;cm^{-1}$ at room temperature with full hydration and $0.0018\;S\;cm^{-1}$ at $120^{\circ}C$ without external humidification, respectively.

Deactivation Behavior of K2CO3 Catalyst in the Steam Gasification of Kideco Coal (Kideco 석탄의 스팀 가스화 반응에서 K2CO3 촉매의 비활성화 거동)

  • VICTOR, PAUL;KIM, SOOHYUN;YOO, JIHO;LEE, SIHYUN;RHIM, YOUNGJOON;LIM, JEONGHWAN;KIM, SANGDO;CHUN, DONGHYUK;CHOI, HOKYUNG;RHEE, YOUNGWOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.5
    • /
    • pp.517-525
    • /
    • 2016
  • The present work investigates the effect of $K_2CO_3$ catalyst on steam gasification of Kideco coal and the deactivation of the catalyst due to thermal exposure and interaction with coal ash. The gasification reactivity at $700^{\circ}C$ is highly enhanced by $K_2CO_3$, which is not deactivated by the heat treatment at $T{\leq}800^{\circ}C$. TGA and XRD results prove minor decomposition of $K_2CO_3$ after the calcination at $800^{\circ}C$. $K_2CO_3$ is, however, evaporated at the higher temperature. Assuming the conversion of $K_2CO_3$ into $K_2O$ by the decomposition and into $K_2O{\cdot}2.5SiO_2$ and $KAlO_2$ by the interaction with coal ash, the reactivity of the gasification is evaluated in the presence of $K_2O$, $K_2O{\cdot}2.5SiO_2$ and $KAlO_2$. Among them, $K_2O$ is the most active, but much lower in the activity than $K_2CO_3$. XRD results show that $K_2CO_3$ could react readily with the ash above $700^{\circ}C$.

Characteristics Evaluation of Combustion by Analysis of Fuel Gas Using Refuse-derived Fuel by Mixing Different Ratios with Organic and Combustible Wastes (배연가스 분석에 의한 가연성과 유기성폐기물을 혼합한 고형화연료 연소 특성평가)

  • Ha, Sang-An
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.3
    • /
    • pp.27-39
    • /
    • 2009
  • The main objective of this study is to investigate the characteristics of combustion by analyzing fuel gases from a combustion equipment with various combustion conditions for refuse-derived fuels (RDFs). CO gas is a parameter for indicating of incomplete combustion during a combustion process. The lowest CO gas was produced when the experiment conditions were m=2 under air-fuel condition and $800^{\circ}C$. $CO_2$ gas is a final product after complete combustions. The highest amount of $CO_2$ gas was produced when the experiment conditions were m=2 under air-fuel condition and $800^{\circ}C$. The highest level of $SO_2$ gas was produced in S.1 sample containing the highest sulfur. The highest level of NOx gas was produced in S.1 sample with the highest nitrogen content and air-fuel condition of m=2 under temperature of $800^{\circ}C$. HCl gas that is generated by reacting with metals catalyst through oxygen catalyst reaction during combustion process is a precursor of dioxin formation. The higher level of HCl gas was produced in the sample with higher chlorine content. The lowest level of HCl gas was produced when the experiment conditions were air-fuel condition of m=2 and $800^{\circ}C$. The lowest level of $NH_3$ gas was generated when the experiment condition was m=2 under air-fuel condition and after 3 minutes. Air-fuel condition is more important to create $NH_3$ gas than operating temperatures. Higher level of $H_2S$ gas was generated in S.1 sample with the higher sulfur content and was created in RDFs that contain higher mixture ratios of sewage sludge and food wastes. A result of combustion, gases and gases levels from the combustion of S.1 and S.2 were very similar to the combustion of a stone coal. As results of this research, when evaluating the feasibility of the RDFs, the RDFs could be used as auxiliary and main fuels.

  • PDF

Study on the Fluidized-Bed Drying Characteristics of Sawdust as a Raw-Material for Wood-Pellet Fuel

  • Lee, Hyoung-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.30-36
    • /
    • 2006
  • Wood fuel must be dried before combustion to minimize the energy loss. Sawdust of Japanese red pine was dried in a batch type fluidized-bed to investigate the drying characteristics of sawdust as a raw material for bio-fuel. The minimum fluidization air velocity was increased as particle size was increased. It took about 21 minutes and 8 minutes to dry 0.08 m-deep bed of particles with average particle size of 1.3 mm from 100% to 10% moisture content at air temperature of $20^{\circ}C$ and $50^{\circ}C$, respectively.