• Title/Summary/Keyword: Fuel switching

Search Result 118, Processing Time 0.026 seconds

Full-bridge Soft-Switching PS-PWM DC-DC Converter for Fuel Cell Generation System (연료전지 시스템을 위한 풀-브리지 소프트 위상 천이 PWM DC-DC 컨버터)

  • Mun, S.P.;Suh, K.Y.;Lee, H.W.;Nakaoko, M.;Shin, H.B.
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.371-376
    • /
    • 2005
  • In this paper, a new a new full-bridge soft-switching phase shift PWM DC-DC Converter has been proposed, which is suitable for fuel cell based power generation system. The proposed converter has outstanding advantage over the conventional DC-DC converter with respect to high efficiency, high power density, and hish component utilization. In special. the proposed converter has predominant high boosting output voltage and high efficiency characteristics under the inherently severs low output voltage of the fuel cell through the overall load conditions. Moreover, the developed converter has been experimentally tested with the help of a fuel cell simulator, and can generate the V-I characteristics of proton exchange membrane(PEM) fuel cell, so that the performance of the proposed converter could be effectively examined and the validity of the converter could be verified.

  • PDF

Review on controllers with a time delay estimation (시간지연추정제어기에 관한 리뷰)

  • Lee H.J.;Yoon J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1120-1124
    • /
    • 2005
  • We reviewed controllers with a time delay estimation in this paper. Time delay control (TDC) and sliding mode control (SMC) are well known robust control schemes. Basically, the TDC has a main characteristic called a time delay estimation from which we can estimate the total uncertainty of a system. . The TDC causes the stick-slip in the case of systems with a friction. The so-called TDCSA which are short for TDC with switching action was developed to reduce the stick-slip. The TDC has the additional switching action term in the TDC structure. In the other hand, the SMC dose not have a time delay estimation but instead it can estimate the system uncertainty through the switching action. The SMC has a difficulty to estimate the total uncertainty of a system because it does not have a time delay estimation. In order to solve the difficulty, some control schemes were developed. Among them, we need to focus our attention on two control schemes: SMCPE and SMCTE, which are short for sliding mode control with a perturbation estimation and sliding mode control with a time delay estimation, respectively. In this paper, we analyzed and compared the characteristic of above three controllers. Even though the motives for the development of three control schemes are different, three control schemes have much in common in terms of their controller structures.

  • PDF

A High Efficiency Soft Switching Boost Converter (고효율 소프트 스위칭 부스트 컨버터)

  • Jung, Doo-Yong;Kim, Jae-Hyeng;Jung, Yong-Chae;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.28-30
    • /
    • 2008
  • This paper proposes soft switching boost converter operating in zero current switching(ZCS) mode for photovoltaic and fuel cell power generation. The proposed topology is capable of reducing the size, and capability of passive element by using soft switching, and it allows for reduction of IGBT switching losses, for the increased of switching frequency. A detail mode analysis of operating in presented. We present the converter topology, principle of operation and simulation results obtained from the PSIM simulator. The performance of the proposed technique in evaluation on 1kW(380V,2.6A) experimental prototype circuit operating at 30kHz.

  • PDF

Supercapacitor Energy Storage System for the Compensation of Fuel Cell Response Characteristics (연료전지 응답특성 보상용 슈퍼커패시터 에너지 저장 시스템)

  • Song, Woong-Hyub;Jung, Jae-Hun;Kim, Jin-Young;Nho, Eui-Cheol;Kim, In-Dong;Kim, Heung-Geun;Chun, Tae-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.440-447
    • /
    • 2011
  • This paper deals with supercapacitor energy storage system for the compensation of the slow response characteristics of a fuel cell generation system for grid connection. A bidirectional dc/dc converter is used for the charging and discharging of the supercapacitor. The conventional converters use additional clamping circuit, etc. to reduce a voltage spike at the instant of switching and to provide wide range of soft switching. The proposed method provides simplified hardware implementation without any clamping circuit, and soft switching condition for both charging and discharging mode with proper switching patterns. The usefulness of the proposed scheme is verified through simulation and experimental results with 1 kW system.

The Dual Design of Fuel Cell Hybrid Power System using Dual Converter PCS (1.5kW 연료전지 복합발전 시스템의 듀얼 컨버터 설계)

  • Shin, Soo-Cheol;Lee, Hee-Jun;Hong, Suk-Jin;Kim, Hak-Sung;Won, Chung-Yuen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.7
    • /
    • pp.67-75
    • /
    • 2013
  • In this paper, parallel input/serial output dual converter is designed appropriately for fuel cell hybrid power system. In case of proposed converter, zero voltage switching condition is designed without additional resonance device using leakage inductance of transformer and output capacitance of switch, and zero voltage switching method is used. Also, the system method is for increasing power by connecting half-bridge in parallel and increasing output voltage by connecting secondary output of transformer in serial. Through this method we can increase power and decrease volume of system. So in this paper, dual converter is designed. 1.5kW fuel cell hybrid power system was implemented, and system operation and stability was verified through experiment.

Economic Impact of City-Gas Industry by the Expansion of Natural Gas Use in Power Generation (발전부문 천연가스 사용 확대에 따른 도시가스 산업의 경제적 파급효과 분석)

  • Yang, Minyoung;Kim, Jinsoo
    • Environmental and Resource Economics Review
    • /
    • v.26 no.4
    • /
    • pp.549-575
    • /
    • 2017
  • Recently, power mix of Korea is planned to be changed from coal-fired and nuclear to gas-combined and renewables by the energy policy of new government. This change will also affect city-gas industry. This paper analyze the economic impact of city-gas industry by scenario that switching coal-fired and nuclear power generation into gas-combined and fuel cell. 2030 input-output table is estimated to take the transfer period into account. As results, the induced impact by city-gas industry to the others was negative when switching into gas-combined while that was positive when switching into fuel cell. This results imply that the gas-fired can be a feasible alternative for short-run but fuel cell is more helpful for our economy in long-run.

A zero-voltage zero-current switching power conversion system for fuel cell (영전압 영전류 스위칭을 이용한 연료전지용 전력변환시스템)

  • Son, Gyoung-Jong;Song, Sung-Geun;Moon, Chae-Joo;Kim, Kwang-Heon;Lim, Young-Cheol;Choi, Joon-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.385-394
    • /
    • 2006
  • The application areas of traditional push-pull converters are limited because the voltage stress of switches is high (twice of the input voltage). But the push - pull converter topology is suitable for unregulated low-voltage to high-voltage power conversion such as the fuel cell. This paper presents a novel power converter structure that is very suitable for the DC/DC converter in fuel cell systems. Based on this structure, a ZVS- ZCS push-pull converter is proposed. The switches of the proposed push-pull converter can operate under ZVS or ZCS condition with the help of a new passive clamping circuit. The passive clamping techniques solves the voltage overshoot problem. Because the buck converter circuit operates at twice the synchronous switching frequency of the push-pull converter, the peak current in the current-fed inductor and transformer is reduced. The operation principle of the proposed converter is analyzed and verified by simulations and experimental results. A 1 kW DC/DC converter was implemented with DSP TMS320F2812, from which experimental results have shown that efficiency improvement and surge suppression can be achieved effectively.

Evaluation of the Middle Part of the Nuclear Fuel Cycle

  • Kovac, Michal
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.169-174
    • /
    • 2016
  • This article describes a comprehensive methodology for the evaluation of the middle part of nuclear fuel cycles. Evaluation of fuel cycles is basically divided into two parts. The first comprises nuclear calculation, i.e., creation of the strategy for nuclear fuel reloading and core design calculations. The second part is the business-economic evaluation of the selected reloading strategy, which can be done either by financial analysis or economic analysis. The financial analysis incorporates the perspectives of a company while the economic analysis can be used primarily by national economists or politicians. This methodology was applied to a case study that is focused on impacts of switching from a 12-month to an 18-month fuel cycle strategy for Water-Water Energetic Reactor (VVER)-1000 reactors.

Study on Power Conditioning System for Fuel Cell Power Generation with 2-Stage DC-DC Converter and Inverter (2단 구성 DC-DC 컨버터와 인버터에 의한 연료전지발전 계통연계시스템 연구)

  • Ju, Young-Ah;Oh, Eun-Tae;Han, Byung-Moon;Lee, Jun-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.8
    • /
    • pp.1551-1558
    • /
    • 2009
  • This paper proposes a new power conditioning system for the fuel cell power generation, which consists of a LLC resonant DC-DC converter and 3-phase inverter. The LLC resonant converter boosts the fuel cell voltage of 26-48V up to 400V, using the hard-switching boost converter and the high-frequency ZVS half-bridge converter. The operation of proposed power conditioning system was verified through simulations with PSCAD/EMTDC software. The feasibility of hardware implementation was verified through experimental works with a laboratory prototype, which was built with 1.2kW PEM fuel-cell stack, 1kW LLC resonant converter, and 3kW PWM inverter. The proposed system can be utilized to commercialize a real interconnection system for the fuel-cell power generation.

Development of Simulation Model for Grid-tied Fuel-Cell Power Generation with Digital Controlled DC-DC Converter (디지털제어 DC-DC컨버터로 구성된 계통연계 연료전지발전 시뮬레이션모델 개발)

  • Ju, Young-Ah;Cha, Min-Young;Han, Byung-Moon;Kang, Tae-Sub;Cha, Han-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1728-1734
    • /
    • 2009
  • This paper proposes a new power conditioning system for the fuel cell power generation, which consists of a ZVS DC-DC converter and 3-phase inverter. The ZVS DC-DC converter with a digital controller boosts the fuel cell voltage of 26-50V up to 400V, and the grid-tie inverter controls the active power delivered to the grid. The operation of proposed power conditioning system was verified through simulations with PSCAD/EMTDC software. The feasibility of hardware implementation was verified through experimental works with a laboratory prototype, which was built with 1.2kW PEM fuel-cell stack, 1kW DC-DC converter, and 3kW PWM inverter. The proposed system can be utilized to commercialize an interconnection system for the fuel-cell power generation.