• Title/Summary/Keyword: Fuel ratio

Search Result 2,275, Processing Time 0.029 seconds

Combustion Characteristics of Cow Manure Pellet as a Solid Fuel Source (고체연료원으로서의 우분 펠릿 연소특성)

  • Jeong, Kwang-Hwa;Lee, Dong-jun;Lee, Dong-Hyun;Lee, Sung-Hyoun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.2
    • /
    • pp.31-40
    • /
    • 2019
  • In Korea, 51,013 thousand tons of livestock manure was generated in 2018. A total of 46,530 thousand tons, which is 91.2% of the total amount of livestock manure generated, was treated by composting(40,647 thousand tons) or liquid fertilization(5,884 thousand tons) method. At present, the policy of livestock manure treatment in Korea is to make livestock manure into organic fertilizer(compost, liquid fertilizer) and then to applicate it on agricultural land. And this policy is very effective in terms of livestock manure treatment and nutrient recycling. However, considering the steadily declining farmland area for decades, the use of livestock manure compost could be limited in the future. There is also concern that local nutrient overloading, nutrient management regulation, and restrictions on the number of livestock may become serious problem for livestock manure treatment. In addition, there are some opinions that nutrient derived from livestock manure may flow into tributaries of major dams. In recent years, there has been a suspicion that fine dust may be generated from livestock manure compost. In recent years, the use of livestock manure fertilizer has been rapidly increasing, there is a growing demand of the development of new technologies for livestock manure treatment. Especially, cow excretes a larger amount of manure than other livestock, so that the efficiency of development of new technology for cow manure treatment will be high. Therefore, in this study, the combustion characteristics of cow manure pellet were investigated in order to analyzed whether cow manure could be used as source of solid fuel. During the combustion test, the weight loss of the cow manure pellet began to increase when the temperature of the combustion chamber reached $300^{\circ}C$. The ratio of $H_2$, $CH_4$, CO in the pyrolysis gas produced in the pyrolysis process of cow manure pellet were 6.65~11.62%, 0.58~1.54 and 11.47~14.07%, respectively.

Removal of Cs by Adsorption with IE911 (Crystalline Silicotitanate) from High-Radioactive Seawater Waste (IE911 (crystalline silicotitanate) 의한 고방사성해수폐액으로부터 Cs의 흡착 제거)

  • Lee, Eil-Hee;Lee, Keun-Young;Kim, Kwang-Wook;Kim, Ik-Soo;Chung, Dong-Yong;Moon, Jei-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.3
    • /
    • pp.171-180
    • /
    • 2015
  • This study was performed on the removal of Cs, one of the main high- radioactive nuclides contained in the high-radioactive seawater waste (HSW), by adsorption with IE911 (crystalline silicotitanate type). For the effective removal of Cs and the minimization of secondary solid waste generation, adsorption of Cs by IE911 (hereafter denoted as IE911-Cs) was effective to carry out in the m/V (ratio of absorbent weight to solution volume) ratio of 2.5 g/L, and the adsorption time of 1 hour. In these conditions, Cs and Sr were adsorbed about 99% and less than 5%, respectively. IE911-Cs could be also expressed as a Langmuir isotherm and a pseudo-second order rate equation. The adsorption rate constants (k2) were decreased with increasing initial Cs concentrations and particle sizes, and increased with increasing ratios of m/V, solution temperatures and agitation speeds. The activation energy of IE911-Cs was about 79.9 kJ/mol. It was suggested that IE911-Cs was dominated by a chemical adsorption having a strong bonding form. From the negative values of Gibbs free energy and enthalpy, it was indicated that the reaction of IE911-Cs was a forward, exothermic and relatively active at lower temperatures. Additionally, the negative entropy values were seen that the adsorbed Cs was evenly distributed on the IE911.

Feasibility Study of a Series Hybrid-Electric Propulsion System for a Fixed Wing VTOL Unmanned Aerial Vehicle (고정익 수직이착륙 무인항공기를 위한 하이브리드-전기 추진시스템의 타당성 연구)

  • Kim, Boseong;Bak, Jeonggyu;Yun, Senghyun;Cho, Sooyoung;Ha, Juhyung;Park, Gyusung;Lee, Geunho;Won, Sunghong;Moon, Changmo;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.12
    • /
    • pp.1097-1107
    • /
    • 2015
  • General VTOL aircraft uses gas turbine engine which has high power to weight ratio. However, in the VTOL UAV in small sector, the gas turbine as a prime mover is not adequate because of the limitation of the high fuel consumption ratio of the gas turbine. In this research, The Series Hybrid-Electric Propulsion System(SHEPS) has been proposed and technology survey & comparison analysis has conducted to constitute propulsion system for engine, electric motor and battery. To achieve this object a 65kg-class P-UAV from "Company I" was used. And to estimate the validity of power control algorithm and developed power management control, Matlab/simulink$^{(R)}$ has been used for the simulation. As a result, the developed algorithm worked comparatively well and the research has predicted that SHEPS was satisfied enough for 7 hour of endurance for mission profile.

Characteristics of Ambient Particulate Matter in Gwangju (광주지역 먼지 특성에 관한 연구)

  • Seo, Gwang-Yeob;Kim, Seung-Ho;Lee, Kyoung-Seok;Min, Kyoung-Woo;Seo, Hee-Jeong;Kang, Yeong-Ju;Paik, Ke-Jin;Moon, Young-Woon;Shin, Dae-Yewn
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.2
    • /
    • pp.108-117
    • /
    • 2010
  • In this study, ambient particulate matter ($PM_{2.5}$ and $PM_{10}$) levels were measured and their chemical and physical properties were characterized. Two sites in Gwangju were sampled once a month from December 2008 to November 2009. The annual mean concentrations of $PM_{2.5}$ and $PM_{10}$ were $26.9\;{\mu}g/m^3$ and $46.3\;{\mu}g/m^3$, respectively, in Nongseongdong and $26.1\;{\mu}g/m^3$ and $44.8\;{\mu}g/m^3$, respectively, in Duam-dong. $PM_{2.5}$ levels were 1.8 times higher than the USA Environmental Protection Agency (EPA) national ambient air quality standard for $PM_{2.5}$ ($15\;{\mu}g/m^3$). The average $PM_{2.5}/PM_{10}$ ratio of 0.58 suggested that $PM_{2.5}$ is a significant component of the ambient particle pollution. The order of concentration of metallic elements in $PM_{2.5}$ and $PM_{10}$ was Si > Al > Fe > Zn > Pb > Cu > Mn. Cd was not detected. The earth crustal enrichment factors for Cr, Cu, Pb and Zn in $PM_{2.5}$ were higher than those in $PM_{10}$. When the earth crustal enrichment factors for Cr, Cu, Pb and Zn were higher than 10, this suggested influence from anthropogenic sources. The soil contribution ratios for $PM_{2.5}$ and $PM_{10}$ were 11.3% and 16.4%, respectively, and were higher in the fall and winter. Anions (${SO_4}^{-2}$, ${NO_3}^-$, and $Cl^-$) comprise 28.7% of $PM_{2.5}$ and 21.4% of $PM_{10}$. The correlation coefficient of Zn-Fe, Mn-Cu, Fe-Cu and Fe-Mn in $PM_{2.5}$ was high in the sampling sites, and metallic elements were primarily from anthropogenic sources such as fuel combustion and vehicle emissions.

A Study on the Synthesis of Tricyclopentadiene Using Ionic Liquid Catalysts (이온성 액체 촉매를 이용한 Tricyclopentadiene 합성에 관한 연구)

  • Kim, Su-Jung;Han, Jeongsik;Jeon, Jong-Ki;Yim, Jin-Heong
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.593-597
    • /
    • 2015
  • Tricyclopentadiene (TCPD) as a next generation high density fuel was synthesized by Diels-Alder oligomerization reaction of DCPD. TCPD was prepared by ionic liquid (IL) catalysts with combination of cationic and anionic precursors. Two kinds of anionic precursors such as copper(I) chloride (CuCl) and iron(III) chloride ($FeCl_3$) and cationic precursors such as triethylamine hydrochloride (TEAC) and 1-butyl-3-methylimidazolium chloride (BMIC) were used. The preparation of TCPD using IL catalyst was superior to that using Diels-Alder reaction in terms of DCPD conversion and TCPD yield. In addition, TCPD yield was correlated with Lewis acidity by changing the ratio of anionic and cationic precursors. The TCPD yield was higher when using CuCl as anionic precursor than that of using $FeCl_3$. Control of Lewis acidity by changing the molar ratio of anionic and cationic precursors could further improve TCPD yield as well.

Manufacture of the Hydrophobic HY-type Zeolite-honeycomb and Its Adsorption/Desorption Characteristics for the Benzene, o-xylene, and MEK (소수성 HY-형 제올라이트제 하니컴의 제조 및 그 하니컴의 벤젠, o-xylene, MEK에 대한 흡.탈착특성)

  • Mo, Se-Young;Jeon, Dong-Hwan;Kwon, Ki-Seung;Sohn, Jong-Ryeul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.1
    • /
    • pp.84-96
    • /
    • 2007
  • We performed the experiments to manufacture the hydrophobic $200cells/in^2$-zeolite honeycomb using HY-type zeolite of Si/Al ratio of 80 for separating and removing the VOCs emitted from small and medium size-plants by adsorption and to determine the drying method for the honeycomb at $105^{\circ}C$ without cracking, then measured performances of the honeycomb to adsorb the benzene, o-xylene, and MEK and to desorb the benzene and MEK saturated on the honeycomb by the nitrogen gas as the desorption gas. As a results, the good honeycomb was formed and the honeycomb was not cracked when the mixing ratio of the zeolite to bentonite to methyl cellulose to polyvinyl alcohol to glycerine to water is 100 : 8.73 : 2.18 : 4.19 : 1.38 : 126 and dried the honeycomb at $105^{\circ}C$ for 24 hours in the drying oven. The shape of the dried honeycomb was not changed after calcination, and the compressive strengths of the honeycomb after drying and calcination were 6.7 and $0.69kg/cm^2$, respectively. The adsorption efficiencies of the honeycomb for benzene, o-xylene, and MEK were $92{\sim}96%$ at the room temperature. The desorption efficiency at $180^{\circ}C$ was higher than that at $150^{\circ}C\;by\;1.5{\sim}13.8%$ depending on the flow rate of the nitrogen gas, and it was found that desorption efficiency is higher than 85% at $180^{\circ}C$ and 1.0L/min of the nitrogen gas. At $180^{\circ}C$ and 0.2 L/min, the concentration of the benzene and MEK in the used desorption gas are higher than 40,000 and 50,000ppm, respectively, so it be used as the fuel for preheating the desorption gas fed into the column in desorption cycle.

A Study on the Modified Fenton Oxidation of MTBE in Groundwater with Permeable Reactive Barrier using Waste Zero-valent Iron (폐영가철 투수성반응벽체를 이용한 Modified Fenton 산화에 의한 MTBE 처리연구)

  • Moon, So-Young;Oh, Min-Ah;Lee, Jai-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.2
    • /
    • pp.15-21
    • /
    • 2012
  • MTBE (Methyl tertiary-butyl ether) has been commonly used as an octane enhancer to replace tetraethyl lead in gasoline, because MTBE increases the efficiency of combustion and decreases the emission of carbon monoxide. However, MTBE has been found in groundwater from the fuel spills and leaks in the UST (Underground Storage Tank). Fenton's oxidation, an advanced oxidation catalyzed with ferrous iron, is successful in removing MTBE in groundwater. However, Fenton's oxidation requires the continuous addition of dissolved $Fe^{2+}$. Zero-valent iron is available as a source of catalytic ferrous iron of MFO (Modified Fenton's Oxidation) and has been studied for use in PRBs (Permeable Reactive Barriers) as a reactive material. Therefore, this study investigated the condition of optimization in MFO-PRBs using waste zero-valent iron (ZVI) with the waste steel scrap to treat MTBE contaminated groundwater. Batch tests were examined to find optimal molar ratio of MTBE : $H_2O_2$ on extent to degradation of MTBE in groundwater at pH 7 with 10% waste ZVI. As the results, the ratio of optimization of MTBE to hydrogen peroxide for MFO was determined to be 1:300[mM]. The column experiment was conducted to know applicability of MFO-PRBs for MTBE remediation in groundwater. As the results of column test, MTBE was removed 87% of the initial concentration during 120days of operational period. Interestingly, MTBE was degraded not only within waste ZVI column but also within sand column. It means the aquifer may affect continuously the MTBE contaminated groundwater after throughout the waste ZVI barrier. The residual products showed acetone, TBF (Tert-butyl formate) and TBA (Tert-butyl acetate) during this test. The results of the present study showed that the recycled materials can be effectively used for not only a source of catalytic ferrous iron but also a reactive material of the MFO-PRBs to remove MTBE in groundwater.

Turbine Efficiency Analysis of Steady Flow in a Twin Scroll Turbocharger (트윈 스크롤 터보과급기에서 정상유동의 터빈 효율 분석)

  • Chung, Jin-Eun;Jeon, Se-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.765-770
    • /
    • 2020
  • The turbochargers used widely in diesel and gasoline engines are effective devices to reduce fuel consumption and emissions. In this study, the isentropic turbine efficiency of the steady flow in a twin-scroll turbocharger for the passenger vehicle gasoline engine was analyzed. The cold gas test bench was designed and made. The pressure and temperature of the inlet and exit of the turbine were measured at 60,000, 70,000, 90,000, and 100,000rpm under the steady-state flow. The isentropic turbine efficiency was calculated. The efficiency was the range of 0.53 to 0.57. The BSR and expansion ratio were changed from 0.71 to 0.84 and from 1.24 to 1.72, respectively. The isentropic turbine efficiency decreased with increasing BSR and expansion ratio. The operation of only scroll A or B was compared with that of the twin-scroll turbine. The isentropic efficiency of using only scroll B was higher than those of only scroll A at 60,000rpm. The isentropic efficiency of using only scroll A was higher than those of only scroll B at 100,000rpm. Therefore, the twin-scroll turbine used in this study is operating effectively in the wide speed range.

Correlation of $^{137}Cs/^{60}Co$ Activity Ratio in Radwaste with Primary Coolant (원자로 냉각재와 방사성폐기물 내 $^{137}Cs/^{60}Co$ 핵종비)

  • Jee, Kwang-Yong;Park, Yeong-Jae;Pyo, Hyung-Yeol;Ahn, Hong-Joo;Kim, Won-Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.1
    • /
    • pp.9-17
    • /
    • 2007
  • In order to compare the correlation of radioactivity ratio between the radwaste streams and the primary coolant of PWR NPPs, A RCS sampling kit was installed to primary coolant system for the collection of the radionuclides during the normal operation of NPPs. RCS samples were collected from PWR type of domestic NPPs through 2004 to 2005, and pretreated with acid microwave digestion or leaching method to assay quantitatively of several interesting radionuclides. The radioactivity ratios of $^{137}Cs\;to\;^{60}Co$ in a filter cartridge and a resin cartridge were 2.3E-2 and 7.3E-1, respectively. At a same period of the reactor operating cycle, the radioactivity ratios of $^{137}Cs\;to\;^{60}Co$ were 6.3E-1 for a evaporator bottom, 6.7E-1 for a spent resin, and 5.6E-2 for a dry active waste, so that these radwaste streams were identified as having similar characteristics with the corresponding RCS samples.

  • PDF

Non-linear Preferences on Bioethanol in South Korea (국내 바이오에탄올에 대한 비선형적 선호에 관한 연구)

  • Bae, Jeong Hwan
    • Environmental and Resource Economics Review
    • /
    • v.23 no.3
    • /
    • pp.515-551
    • /
    • 2014
  • Recently, there has been a debate as to whether bioethanol should replace some portion of gasoline for fuels in South Korea, as energy security as well as climate change issues are rising as a significant national agenda. However, a considerable amount of subsidy will be required to compensate for the higher price of bioethanol-blended gasoline. In this context, government subsidy will obtain justification only when the positive social gains from consuming bioethanol for fuels can exceed the negative social costs. Through a nation-wide choice experimental survey, we examine if South Koreans have a positive value as well as non-linear preferences on substituting bioethanol for gasoline. The results reveal that the willingness to pay for purely domestic bioethanol-blended gasoline within 10% is about 52 KRW; Koreans have concave preferences on the blending ratio of bioethanol to gasoline. The turning point of the blending ratio of bioethanol was 6.5%. Also, we found inverse U-shaped curve between income and bioethanol choice probability and the turning point of the income was calculated as 250~299million KRW. Politically conservative propensity advocates uses of bioethanol blended gasoline, but awareness on bioethanol or more weights on environmental conservation have significantly negative effects on the choice of bioethanol. However, the design of the survey questionnaire is incompatible with the RFS of Korea and assumes orthogonality among the following four interrelated attributes: (i) domestic or offshore procurement of feedstocks in the case of domestic production, (ii) domestic production or import of bioethanol, (iii) the blending ratios, and (iv) the retail price increases. In addition, the results of model estimation and of model selection test are not definite. Hence, the results in this study should not be directly applied to the design of the specifics of the Korean RFS. Hence, the results in this study require cautions in applying to the design of the Korean RFS policy.