• Title/Summary/Keyword: Fuel process

Search Result 2,733, Processing Time 0.033 seconds

Effect of pre-post injection timing of diesel fuel for naval vessel on the combustion and emission characteristics in an optically-accessible single cylinder diesel engine (단기통 디젤엔진에서 함정용 디젤유의 전·후 분사시기가 연소 및 배출가스 특성에 미치는 영향)

  • Lee, Hyungmin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.868-876
    • /
    • 2014
  • The objective of this study is focused on the analyzing combustion, carbon monoxide and hydrocarbon emission characteristics of marine diesel oil, utilized for naval propulsion engine, with varying pre-post injection timing of an optically accessible single cylinder engine. And also the combustion process is analyzed by means of a high speed camera visualization. On the result of retarding pre-injection timing toward main injection timing, the mean effective pressure and maximum pressure of combustion chamber are increased; however, the heat release rate is decreased. Furthermore, the emission rates of carbon monoxide and hydrocarbon are reduced in this case. In hence, when a post-injection timing is advanced, the mean effective pressure and maximum pressure are increased, because the combustion has been performed under the high temperature and high pressurized environment during main injection time, and the emission rates of carbon monoxide and hydrocarbon are increased. From the experimental results, it considered that retarding of pre-injection timing affects to shorten the ignition delay of main injection clearly, and to raise the flame intensity comparing to the advanced state. The ignition delay during post-injection is not appeared at any post-injection time, but the flame intensity has been weakened gradually according to the retarding of post-injection timing.

Characteristics of a Plasma-Dump Combustor for VOC Destruction (VOC 분해 플라즈마-덤프 연소기 특성)

  • Kim, Eun Hyuk;Chun, Young Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.8
    • /
    • pp.492-497
    • /
    • 2015
  • VOCs (Volatile Organic Compounds) are generally generated in the painting process, or at the company and laundry where use organic solvents. The VOCs consist of various hydrocarbons and has low calorific value due to its dilution with atmospheric air. Therefore, the VOCs are difficult to burn by a conventional fuel combustor. In this study, a novel plasma dump combustor was proposed for the treatment of low calorific VOC gases. This combustor was designed a combination of the characteristics in a plasma burner, a dump combustor and a 3D matrix burner. The combustor has good structure for maintaining enough residence time and reaction temperature for stable flame formation and VOC destruction. For investigating the performance characteristics of the plasma dump combustor, an experiment was achieved for VOC feed rate, VOC injector position, etc. Toluene was used as a surrogate of VOC. The novel combustor gave better performance than a conventional combustor, showing that VOC destruction rate and energy efficiency were 89.64% and 12.27 kg/kWh respectively, at feeding rate of 450 L/min of VOC of 3,000 ppm of toluene concentration.

A Study on the Method for the Removal of Radioactive Corrosion Produce Using Permanent and Electric Magnets

  • Kong Tae-Young;Song Min-Chul;Lee Kun-Jai
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.2
    • /
    • pp.113-123
    • /
    • 2005
  • The removal of radioactive corrosion products from the reactor coolant through a magnetic filter system is one of the many approaches being investigated as a means to reduce radiation sources and exposures to the operational and maintenance personnel in a nuclear power plant. Many research activities in water chemistry, therefore, have been performed to provide a filtration system with high reliability and feasibility and are still in process. In this study, it was devised the magnetic filter system with permanent and electric magnets to remove the corrosion products in the coolant stream taking an advantage of the magnetic properties of corrosion particles. Permanent magnets were used for separation of corrosion products and electric magnets were utilized for flocculation of colloidal particles to increase in their size. Experiments using only permanent magnets, in the previous study, displayed the satisfactory outcome of filtering corrosion products and indicated that the removal efficiency was more than 90 $\%$ for above 5 $\mu$m particles. Experiments using electric magnets also showed the good performance of flocculation without chemical agents and exhibited that most corrosion particles were flocculated into larger aggregates about 5 $\mu$m and over in diameter. It is, thus, expected that the magnetic filter system with the arrangement of permanent and electric magnets will be an effective way for the removal of radioactive corrosion products with considerably high removal efficiency.

  • PDF

The Characterization of Spherical Perticles in Steam Generator Sludge (증기발생기 슬러지 중 구형입자의 특성 조사)

  • Pyo, Hyung-Yeal;Park, Yang-Soon;Park, Sun-Dal;Park, Kyoung-Kyun;Song, Byung-Chul;Park, Yong-Joon;Jee, Kwang-Yong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.1
    • /
    • pp.59-64
    • /
    • 2006
  • Ion exchange resin particles should not be found in steam generator(S/G) sludge. The suspicious spherical resin particles observed in S/G sludge sample were characterized for particle size distribution under optical microscope using the micro-technique, for element analysis by the electron probe micro analysis (EPMA), and for molecular identification by the IR spectroscopy. The particle sizes are distributed from 1 to $200{\mu}m$ for the sludge, while 40 to $500{\mu}m$ for the spherical resin particles. The results of the elemental analysis showed different major impurities: Si, Al, Mn, Cr, Ni, Zn and Ti for the sludge particles, while Si, Cu, Zn for the spherical resin particles. However, both particles contain Fe as a matrix of magnetite $(Fe_3O_4)$. IR spectrum of the spherical particles was not quite similar to the IR spectrum of ion exchange resins used in S/G system. These results indicate that the spherical particles are not related to ion exchange resin particles and may be formed by the process of the sludge formation.

  • PDF

An Investigation of Diffusion of Iodide Ion in Compacted Bentonite Containing Ag2O (Ag2O를 첨가한 압축 벤토나이트에 대한 요오드 이온의 확산 특성 관찰)

  • Yim, Sung-Paal;Lee, Ji-Hyun;Choi, Heui-Joo;Choi, Jong-Won;Lee, Cheo-Kyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.1
    • /
    • pp.33-40
    • /
    • 2011
  • In the compacted bentonite containing $Ag_2O$, the transport of iodide ion was investigated by Through-diffusion method. It is confirmed that Iodide ion is transported by diffusion process in the compacted bentonite containing $Ag_2O$ as well as in the compacted bentonite without $Ag_2O$. However, the lag-time of iodide ion in the compacted bentonite containing $Ag_2O$ is larger than that in the compacted bentonite without $Ag_2O$. The increase of the lag-time was observed in pure iodide ion solution and also in 0.1M NaCl-iodide ion solution. The apparent diffusion coefficient of iodide ion in the compacted bentonite containing $Ag_2O$ has lower value than that in the compacted bentonite without $Ag_2O$. The effect of $Ag_2O$ on the effective diffusion coefficient was not clearly investigated in the compacted bentonite containing $Ag_2O$ while the values of effective diffusion coefficient of iodide ion in the compacted bentonite without $Ag_2O$ obtained in this study were similar to those in the compacted bentonite reported in the literature.

Determination of 129I in simulated radioactive wastes using distillation technique (증류법을 이용한 모의 방사성폐기물 중 129I 의 정량)

  • Choi, Ke-Chon;Song, Byung-Cheol;Han, Sun-Ho;Park, Yong-Joon;Song, Kyu-Seok
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.3
    • /
    • pp.141-148
    • /
    • 2011
  • It is clarified in the radioactive waste transfer regulation that the concentration of radioactive waste for the major radio nuclide has to be examined when radioactive waste is guided to the radioactive waste stores. In case of the low level radioactive waste sample, the analytical results of radioactive waste concentration frequently show a value lower than minimum detectable activity (MDA). Since the MDA value basically depends on the amount of a sample, background value, measurement time, counting efficiency, and etc, it would be necessary to increase a sample amount with a intention of minimizing MDA. In order to measure a concentration of $^{129}I$ in low and medium level radioactive waste, $^{129}I$ was collected by using a distillation technique after leaching the simulated radioactive waste sample with a non-volatile acid. The recovery of $^{129}I$ measured was compared with that measured with column elution technique which is a conventional method using an anion-exchange resin. The recovery of inactive iodide by using the distillation method and column elution were found as $86.5{\pm}0.9%$ and $87.3{\pm}2.7%$, respectively. The recovery and MDA value calculated for distillation technique when 100 g of extracted solution of $^{129}I$ was taken, were found to be $84.6{\pm}1.6%$ and $1.2{\times}10^{-4}Bq/g$, respectively. Consequently, the proposed technique with simplified process lowered the MDA value more than 10 times compared to the column elution technique that has a disadvantage of limited sampling amount.

A Study on Ventilation System of Underground Low-Intermediate Radioactive Waste Repository (지하 동굴식 중-저준위 방사성 폐기물 처분장의 환기시스템 고찰)

  • Kim, Young-Min;Kwon, O-Sang;Yoon, Chan-Hoon;Kwon, Sang-Ki;Kim, Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.1
    • /
    • pp.65-78
    • /
    • 2007
  • The pollutants (Rn, CH, CO, HS, radioactive gas from radiolysis) were generated from the process of construction and operation of underground repository, and after disposal of low-intermediate radioactive waste inside there must be controlled by a ventilation system to distribute them in area where enough air is supported. Therefore, a suitable technical approach is needed especially at an underground repository that is equipped with many entry tunnels, storage tunnels, exhaust-blowing tunnels, and vertical shafts in complicated network form. For the technical approach of such a ventilation system, WIPP (Waste Isolation Pilot Plant) in U. S and SFR (Slutforvar for Reaktorafall) low-intermediate radioactive waste repository in Sweden were selected as the models, for calculating the required air quantity, organizing a ventilation network considering cross section, length, surface roughness of the air passage, and describing a calculation of resistance of each circuit. Based on these procedures, a best suited ventilation system was completed with designing proper capacity of fans and operating plan of vertical shafts. As a result of comparing the two repositories based on the geometry dimensions and ventilation facility equipment operation, more parallel circuit as in WIPP, brought decrease in resistance for entire system leading to reduce of operating costs, and the larger cross-sectional area of the SFR, the greater the percentage of disposal capacity. Accordingly, the mixture of parallel circuit of WIPP repository for reducing resistance and SFR repository formation for enlargement of disposal capacity would be the most rational and efficient ventilation system.

  • PDF

The Newest Technology Development and Commercialization Status of Coal Gasification (석탄가스화 기술의 최신 개발 동향 및 상업화 현황)

  • Lee, Jin-Wook;Yun, Yongseung;Kang, Won-seok
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.150-163
    • /
    • 2015
  • Gasification technology is one of the representative next-generation fossil fuel utilization technologies, converting low grade fossil fuels such as coal, heavy residue oil, pet-coke into highly clean and efficient energy sources. Accordingly, related market demand for gasification technology is ever increasing steadily and rapidly. A few years ago, conventional pulverized coal utilization technology had an edge over the gasification technology but the most significant technical barrier of limited capacity and availability has been largely overcome nowadays. Futhermore, it will be more competitive in the future with the advancement of related technologies such as gas turbine, ion transfer membrane and so on. China has recently completed a commercialization-capable large-scale coal gasification technology for its domestic market expansion and foreign export, rapidly becoming a newcomer in the field and competing with existing US and EU technical leadership at comparable terms. Techno-economic aspect deserves intensive attention and steady R&D efforts need to continue in organized, considering that gasification technology is quite attractive combined with $CO_2$ capture process and coal to SNG plant is economically viable in Korea where natural gas is very expensive. In the present paper, recent technology development and commercialization trend of many leading companies with coal gasification expertise have been reviewed with significant portion of literature cited from the recently held '2014 Gasification Technology Conference'.

The thermodynamic efficiency characteristics of combined cogeneration system of 120MW (120MW급 열병합 복합발전시스템의 열역학적 효율 특성)

  • Choi, Myoungjin;Kim, Hongjoo;Kim, Byeongheon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.29-36
    • /
    • 2017
  • In this study, acombined cogeneration power plant produced two types of thermal energy and electric or mechanical power in a single process. The performance of each component of the gas turbine-combined cogeneration system was expressed as a function of the fuel consumption of the entire system, and the heat and electricity performance of each component. The entire system consisted of two gas turbines in the upper system, and two heat recovery steam generators (HRSG), a steam turbine, and two district heat exchangers in the lower system. In the gas turbine combined cogeneration system, the performance test after 10,000 hours of operation time, which is subject to an ASME PTC 46 performance test, was carried out by the installation of various experimental facilities. The performance of the overall output and power plant efficiency was also analyzed. Based on the performance test data, the test results were compared to confirm the change in performance. This study performed thermodynamic system analysis of gas turbines, heat recovery steam generators, and steam turbines to obtain the theoretical results. A comparison was made between the theoretical and actual values of the total heat generation value of the entire system and the heat released to the atmosphere, as well as the theoretical and actual efficiencies of the electrical output and thermal output. The test results for the performance characteristics of the gas turbine combined cogeneration power plant were compared with the thermodynamic efficiency characteristics and an error of 0.3% was found.

Analysis of $^{99}Tc$ and Its Activity Level in the Korean Soil (한국 토양의 $^{99}Tc$ 분석 및 방사능 농도 준위)

  • Lee, Chang-Woo;Chung, Kun-Ho;Cho, Young-Hyun;Kang, Mun-Ja;Lee, Wan-No;Kim, Hee-Reyoung;Choi, Geun-Sik
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.1
    • /
    • pp.25-31
    • /
    • 2009
  • An analytical method of $^{99}Tc$ concentration in soil was set up and discussed considering the $^{99}Tc$ concentration in Korean soil measured with its analytical method. A selective TEVA resin was used to separate and purify the $^{99}Tc$ in the soil sample. $^{99m}Tc$ from a commercial $^{99}Mo/^{99m}Tc$ generator was used as a yield tracer for the chemical separation of $^{99}Tc$ and its problem when using $^{99m}Tc$ as a tracer was discussed. The chemical recovery yield of $^{99}Tc$ was above 70%. The optimum conditions of inductively coupled plasma mass spectrometry system(ICP-MS) were set up to determine the $^{99}Tc$ after the separation process. The minimum detectable activity(MDA) was 15 mBq/kg-dry in this analytical procedure. The $^{99}Tc$ concentration in soils of Jeju and Kori were measured in the rage of 33.73-89.16 mBq/kg-dry. Those values were less than those reported in other countries and seemed to be originated from atmospheric fallout.

  • PDF