• Title/Summary/Keyword: Fuel preparation room

Search Result 8, Processing Time 0.024 seconds

Operation Room Fire: Caution for Using Electrocautery after Rinsing Operation Field at the End of the Surgery with Alcohol-Based Cleansing Solutions (수술방 화재: 수술 종료 시 알코올 함유 피부 소독액을 이용한 수술부위 세척 이후 전기소작기 사용 주의)

  • Song, Jong Keun;Shin, Hyojeong;Lee, Jun Yong
    • Journal of the Korean Burn Society
    • /
    • v.22 no.2
    • /
    • pp.34-37
    • /
    • 2019
  • Fires in operating rooms rarely occur. However, this type of disaster can complicate almost any surgical procedure. Fuel, heat and oxygen are related with fire outbreak. When ignition sources such as alcohol-based surgical preparation solutions are present, the risk of an operating room fire increases, and burns are more severe in such conditions. Many manufacturers recommend waiting at least three minutes after application to allow complete drying for reduce fire risk. There are a few studies regarding flame burns in the operation room, although most of these studies are related to preoperative skin preparation. However, alcohol containing solutions can be used occasionally for cleansing of the operation field after the surgery, therefore, the surgical team should pay attention to surgical fires, even if they have completed the operation successfully. We present our case of a post-operative flame burn and introduce some precautions that will reduce the risk of alcohol burns.

A Study on Ventilation Characteristics in Fuel Preparation Room of Hydrogen Fueled Vessel (수소추진선박의 연료준비실내의 환기특성에 관한 연구)

  • Bo Rim Ryu;Phan Anh Duong;Quoc Huy Nguyen;Hokeun Kang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.158-159
    • /
    • 2022
  • Due to the climate crisis, various environmental regulations including greenhouse gas reduction are in effect. This is not limited to any specific industry sector, but is affecting the entire industry worldwide. For this reason, the IMO and governments of each country are announcing strategies and policies related to the shipbuilding and shipping industries. The current regulations can be partially resolved through additional facilities such as scrubbers while using existing fossil fuels, but ultimately, the emission of greenhouse gases such as CO2 from the exhaust gases generated by ships must be restricted through energy conversion. To this end, it is necessary to develop fuels that can replace traditional fuels such as oil and natural gas. Among them, hydrogen is attracting attention as a clean energy that does not emit pollutants when used as a fuel. However, hydrogen has a wide explosive range and a fast dispersion speed, so research on this is necessary. Therefore, in this paper, when hydrogen leakage occurs in the fuel preparation room of a hydrogen-powered ship, the trend was analyzed and the ventilation characteristics were investigated.

  • PDF

UO2 Kernel Particle Preparation for HTGR Nuclear Fuel (고온가스로용 핵연료 UO2 Kernel 입자제조)

  • Jeong, Kyung-Chai;Kim, Yeon-Ku;Oh, Seung-Chul;Cho, Moon-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.8
    • /
    • pp.437-444
    • /
    • 2007
  • The broth solution was prepared by the mixing of an uranyl nitrate, THFA, PVA, and water. The uranium concentration of the broth solution was $0.5{\sim}0.8$ mole-U/L and the viscosity of it was $30{\sim}80cSt$. The droplets of this broth solution were farmed in air and ammonia by the vibrating nozzle with the frequency of 100 Hz at the amplitude of $100{\sim}130V$. The diameter of the droplet was about $1900{\mu}m$ from using the nozzle diameter of 1 mm. The diameter of the aged gel was about $1400{\mu}m$ after aging in ammonia solution at $60{\sim}80^{\circ}C$, and the dried gel with the diameter of about $900{\mu}m$ was obtained after drying at room temperature or partially vacuum condition. The diameter of the calcined $UO_3$ microsphere after calcination at $600^{\circ}C$ appeared about $800{\mu}m$ in air atmosphere. Although the droplets of the same sizes were formed, the calcined microspheres of different sizes were manufactured in the case of the broth solutions of the different uranium concentration. The droplets of the desired diameters were obtained by the change of the nozzle diameters and the broth flow rates.

Technology Research on Gas Turbine Combustor Utilizing Melt-Growth Composite Ceramics

  • Konoshita, Yasuhiro;Hagari, Tomoko;Matsumotoi, Kiyoshi;Ogata, Hideki;Ishida, Katsuhiko
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.854-860
    • /
    • 2004
  • "Research and Development of Melt-Growth Composite (MGC) Ultra High Efficiency Gas Turbine System Technology" program has been started in JFY2001. The main objective of the program is to establish basic component technologies to apply MGC material to an efficient gas turbine system successfully. It is known that MGC material maintains its mechanical strength at room temperature up to about 2000 K, which is ideal for the high temperature gas turbine. The purposes of the present study are to develop the cooling structure of the gas turbine combustor liner where MGC material is applied as the heat shield panel, also to develop the low NOx combustion system for a 1970 K (1700 deg.C) class gas turbine combustor. To start with, basic heat transfer characteristics were investigated by one-dimensional calculation and heat transfer experiment for the cooling structure. Axially staged configuration and fuel preparation were investigated by CFD calculation and experiments for the low NOx combustor.

  • PDF

Preparation and Characteristics of $\gamma-LiAlO_2$ Fibers by the Sol-Gel Method (졸-겔 법에 의한 $\gamma-LiAlO_2$ 화이버의 제조 및 특성)

  • 현상훈;홍성안;신현철
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.2
    • /
    • pp.197-208
    • /
    • 1995
  • ${\gamma}$-LiAlO2 fibers for fiber reinforced molten carbonate fuel cell (MCFC) matrix have been produced from LiAlO2 complex polymeric sols using the sol-gel process. The stable and spinnable LiAlO2 sols could be synthesized by mixing LiNO3 alcohol solutions in aluminum complex polymeric sols prepared through the condensationpolymerization reaction of 1 more of aluminum tri-sec-butoxide with 0.55 mole of mixed chelates (mole ratio of acetylaceton/triethanolamine=0.25/0.3). It was found that the viscosity range for fiber-spinning should be higher than 30 poise. The defect-free flexible ${\gamma}$-LiAlO2 fibers with the average tensile strength of 350 MPa could be obtained when the spinned fibers were heat-treated to 120$0^{\circ}C$ on the specified heating schedule after dried at room temperature.

  • PDF

Evaluation of axial and tangential ultimate tensile strength of zirconium cladding tubes

  • Kiraly, Marton;Antok, Daniel Mihaly;Horvath, Laszlone;Hozer, Zoltan
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.425-431
    • /
    • 2018
  • Different methods of axial and tangential testing and various sample geometries were investigated, and new test geometries were designed to determine the ultimate tensile strength of zirconium cladding tubes. The finite element method was used to model the tensile tests, and the results of the simulations were evaluated. Axial and tangential tensile tests were performed on as-received and machined fuel cladding tube samples of both E110 and E110G Russian zirconium alloys at room temperature to compare their ultimate tensile strengths and the different sample preparation methods.

Preparation and Characterization of Poly(styrenesulfonic acid)-grafted Fluoropolymer Membrane for Direct Methanol Fuel Cell

  • Choi, Jae-Hak;Kang, Phil-Hyun;Lim, Youn-Mook;Sohn, Joon-Yong;Shin, Jun-Hwa;Jung, Chan-Hee;Jeun, Joon-Pyo;Nho, Young-Chang
    • Korean Membrane Journal
    • /
    • v.9 no.1
    • /
    • pp.52-56
    • /
    • 2007
  • A proton exchange membrane was prepared by ${\gamma}-irradiation-induced$ grafting of styrene into poly(tetrafluoro-ethylene-co-perfluoropropyl vinyl ether) (PFA) and subsequent sulfonation reaction. The degree of grafting (DOG) increased with an increase in the absorbed dose. The prepared membranes showed high ion exchange capacity reaching 3.0 meq/g, which exceeded the performance of commercially available perfluorosulfonic acid membranes such as Nafion. The proton conductivity of PFA-g-PSSA membrane increased with the DOG and reached 0.17 S/cm for the highest sample at room temperature. The DMFC performance of the prepared membranes with 50% DOG was comparable to that of Nafion membrane.

New Boron Compound, Silicon Boride Ceramics for Capturing Thermal Neutrons (Possibility of the material application for nuclear power generation)

  • Matsushita, Jun-ichi
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.15-15
    • /
    • 2011
  • As you know, boron compounds, borax ($Na_2B_4O_5(OH)_4{\cdot}8H_2O$) etc. were known thousands of years ago. As for natural boron, it has two naturally occurring and stable isotopes, boron 11 ($^{11}B$) and boron 10 ($^{10}B$). The neutron absorption $^{10}B$ is included about 19~20% with 80~81% $^{11}B$. Boron is similar to carbon in its capability to form stable covalently bonded molecular networks. The mass difference results in a wide range of ${\beta}$ values between the $^{11}B$ and $^{10}B$. The $^{10}B$ isotope, stable with 5 neutrons is excellent at capturing thermal neutrons. For example, it is possible to decrease a thermal neutron required for the nuclear reaction of uranium 235 ($^{235}U$). If $^{10}B$ absorbs a neutron ($^1n$), it will change to $^7Li+^1{\alpha}$ (${\alpha}$ ray, like $^4He$) with prompt ${\gamma}$ ray from $^{11}B$ $^{11}B$ (equation 1). $$^{10}B+^1n\;{\rightarrow}\;^{11}B\;{\rightarrow}\; prompt \;{\gamma}\;ray (478 keV), \;^7Li+4{\alpha}\;(4He)\;\;\;\;{\cdots}\; (1)$$ If about 1% boron is added to stainless steel, it is known that a neutron shielding effect will be 3 times the boron free steel. Enriched boron or $^{10}B$ is used in both radiation shielding and in boron neutron capture therapy. Then, $^{10}B$ is used for reactivity control and in emergency shutdown systems in nuclear reactors. Furthermore, boron carbide, $B_4C$, is used as the charge of a nuclear fission reaction control rod material and neutron cover material for nuclear reactors. The $B_4C$ powder of natural B composition is used as a charge of a control material of a boiling water reactor (BWR) which occupies commercial power reactors in nuclear power generation. The $B_4C$ sintered body which adjusted $^{10}B$ concentration is used as a charge of a control material of the fast breeder reactor (FBR) currently developed aiming at establishment of a nuclear fuel cycle. In this study for new boron compound, silicon boride ceramics for capturing thermal neutrons, preparation and characterization of both silicon tetraboride ($SiB_4$) and silicon hexaboride ($SiB_6$) and ceramics produced by sintering were investigated in order to determine the suitability of this material for nuclear power generation. The relative density increased with increasing sintering temperature. With a sintering temperature of 1,923 K, a sintered body having a relative density of more than 99% was obtained. The Vickers hardness increased with increasing sintering temperature. The best result was a Vickers hardness of 28 GPa for the $SiB_6$ sintered at 1,923K for 1 h. The high temperature Vickers hardness of the $SiB_6$ sintered body changed from 28 to 12 GPa in the temperature range of room temperature to 1,273 K. The thermal conductivity of the SiB6 sintered body changed from 9.1 to 2.4 W/mK in the range of room temperature to 1,273 K.

  • PDF