• Title/Summary/Keyword: Fuel momentum

Search Result 132, Processing Time 0.023 seconds

Characteristics of the Spray and Combustion in the Liquid Jet (수직 분사되는 연료제트의 분무 및 연소특성)

  • 윤현진;문수연;손창현;이충원
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.107-115
    • /
    • 2002
  • In this paper, spray and combustion characteristics of a liquid-fueled ramjet engine were experimentally investigated. The spray penetrations were measured to clarify the spray characteristics of a liquid jet injected transversely into the subsonic vitiated airstream, which Is maintained a high velocity and temperature. The spray penetrations are increased with decreasing airstream velocity, increasing airstream temperature, and increasing air-fuel momentum ratio. To compensate our results of penetrations, the new experimental equation were modified from Inamura's equation. In the case of insufficient penetration, the combustion phenomenon in ram-combustor were unstable. Therefore, the sufficient penetration must be considered to make a stable flame.

Hexane Vapor Concentration Measurement of a Liquid Jet in Crossflow (수직분사제트에서의 헥산 증기농도측정)

  • Oh, Jeong-Seog;Lee, Won-Nam;Lee, Jong-Geun;Santavicca, Dominique A.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.4
    • /
    • pp.25-31
    • /
    • 2010
  • The vapor concentration of hexane in a liquid spray jet in crossflow was qualitatively measured on the basis of the infrared (IR) extinction techniques. The objectives of the present study are to understand the whole evaporation process from droplet breakup to vapor and to confirm the usefulness of IR emission method in a lab-scale ramjet combustor. From the experimental results, we concluded that hexane vapor mole fraction increased with temperature rise and kept nearly constant during the variation of fuel to air momentum ratio.

Multi-phase Flow Modeling of Vapor Explosion Propagation (증기폭발 전파과정 해석을 위한 다상유동 모델 개발)

  • Park, I. K.;Park, G. C.;K. H. Bang
    • Nuclear Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.103-117
    • /
    • 1996
  • A mathematical model of vapor explosion propagation is presented. The model predict two-dimensional, transient flow fields and energies of the four fluid phases of melt drop, fragmented debris, liquid coolant and vapor coolant by solving a set of governing equations with the relevant constitutive relations. These relations include melt fragmentation, coolant-phase-change, and heat and momentum exchange models. To allow thermodynamic non-equilibrium between the coolant liquid and vapor, an equation of state for oater is uniquely formulated. A multiphase code, TRACER, has been developed based on this mathematical formulation. A set of base calculations for tin/water explosions show that the model predicts the explosion propagation speed and peak pressure in a reasonable degree although the quantitative agreement relies strongly on the parameters in the constitutive relations. A set of calculations for sensitivity studies on these parameters have identified the important initial conditions and relations. These are melt fragmentation rate, momentum exchange function, heat transfer function and coolant phase change model as well as local vapor fractions and fuel fractions.

  • PDF

Numerical Study of Evaporation and Ignition of in-line Array Liquid Droplets (액적 배열의 증발과 착화에 관한 수치해석적 연구)

  • 김충익;송기훈
    • Fire Science and Engineering
    • /
    • v.13 no.1
    • /
    • pp.37-47
    • /
    • 1999
  • The spreading fire of very small floating particles after they are ignited is fast and t therefore dangerous. The research on this area has been limited to experiments and global simulations which treat them as dusts or gaseous fuel with certain concentration well m mixed with air. This research attempted micro-scale analysis of ignition of those particles modeling them as liquid droplets. For the beginning, the in-line array of fuel droplets is modeled by two-dimensional, unsteady conservation equations for mass, momentum, energy and species transport in the gas phase and an unsteady energy equation in the liquid phase. They are solved numerically in a generalized non-orthogonal coordinate. The single step chemical reaction with reaction rate controlled by Arrhenius’ law is assumed to a assess chemical reaction numerically. The calculated results show the variation of temperature and the concentration profile with time during evaporation and ignition process. Surrounding oxygen starts to mix with evaporating fuel vapor from the droplet. When the ignition condition is met, the exothermic reactions of the premixed gas initiate a and burn intensely. The maximum temperature position gradually approaches the droplet surface and maximum temperature increases rapidly following the ignition. The fuel and oxygen concentration distributions have minimum points near the peak temperature position. Therefore the moment of ignition seems to have a premixed-flame aspect. After this very short transient period minimum points are observed in the oxygen and fuel d distributions and the diffusion flame is established. The distance between droplets is an important parameter. Starting from far-away apart, when the distance between droplets decreases, the ignition-delay time decreases meaning faster ignition. When they are close and after the ignition, the maximum temperature moves away from the center line of the in-line array. It means that the oxygen at the center line is consumed rapidly and further supply is blocked by the flame. The study helped the understanding of the ignition of d droplet array and opened the possibility of further research.

  • PDF

Study on the High Pressure Combustion Performance Characteristics of the 1st Row Pintle Injector using LOx-Kerosene as Propellant (LOx와 Kerosene을 추진제로 하는 1열 핀틀 분사기의 고압 연소성능 특성에 관한 연구)

  • Kang, Donghyuk;Kim, Jonggyu;Ryu, Chulsung;Ko, Youngsung
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.5
    • /
    • pp.17-25
    • /
    • 2022
  • The pintle injector has many advantages in the key characteristics of a liquid rocket engine, such as combustion stability, combustion efficiency, and wide range of comprehensive thrust control, design and manufacture, and test fired under supercritical conditions. The pintle injector is manufactured with a rectangular, single-row orifice for thrust control and production considerations. In order to verify the combustion performance of the pintle injector and its potential as a commercial injector, the combustion characteristics were analyzed by varying the TMR (Total Momentum Ratio) and BF (Blockage Factor). The result of the hot firing test showed that the heat flux increased as TMR increased, and it confirmed that the characteristic velocity efficiency was more affected by BF than TMR. Suppose a single-row pintle injector with efficiency characteristics insensitive to changes in TMR can achieve high efficiency at low fuel differential pressure conditions. In that case, the variable pintle injector's design flexibility can be increase.

Dynamic Simulation of the Water-steam System in Once-through Boilers - Sub-critical Power Boiler Case - (관류보일러 물-증기 계통의 동적 시뮬레이션 - 아임계 동력보일러 사례 -)

  • Kim, Seongil;Choi, Sangmin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.5
    • /
    • pp.353-363
    • /
    • 2017
  • The dynamics of a water-steam system in a once-through boiler was simulated based on the physics-based modeling approach, representing the system in response to large load change or scale disturbance simulations. The modeling considered the mass, energy conservation, and momentum equation in the water pipe and the focus was limited to the sub-critical pressure region. An evaporator tube modeling was validated against the reference data. A simplified boiler system consisting of economizer, evaporator, and superheater was constructed to match a 500 MW power boiler. The dynamic response of the system following a disturbance was discussed along with the quantitative response characteristics. The dynamic response of the boiler system was further evaluated by checking the case of an off-design point operation of the feedwater-to-fuel supply ratio. The results re-emphasized the significance of controlling the feedwater-to-fuel supply ratio and additional design requirements of the water-steam separator and spray attemperator.

Development of Gas Generator for Liquid Rocket Engine to prevent of damage for LOx post (가스 발생기 분사기 LOx post 손상 방지를 위한 분사기 개발)

  • Song Ju-Young;Kim Jong-Gyu;Moon Il-Yoon;Han Yeoung-Min;Choi Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.353-357
    • /
    • 2005
  • LOx post damage occurs from the development process of the full-scale gas generator which is necessary to 30 tonf class engine development was described. The cause and analysis for damage was described. The combustion test result of 4 injector, the full-scale gas generator and redesigned injector was described. Combustion instability, purge, the low momentum of LOx spray, small recess number, the low flow of LOx, and the high spray angle is main reason the possibility of knowing. The redesign for the injector in the direction of increase of recess number, increase of LOx and fuel spray angle, decrease of gap interval between the LOx post outer wall and fuel screen and increase of LOx post wall thick became accomplished.

  • PDF

Effects of 3D Flow-Channel Configurations on the Performance of PEMFC using Computational Fluid Dynamics (전산유체역학을 이용한 PEMFC의 성능에 대한 3차원 유로 구조의 영향)

  • Han, Kyoung-Ho;Yoon, Do Young
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.847-853
    • /
    • 2016
  • Here has been examined a 3-dimensional computational fluid dynamics (CFD) modeling in order to investigate the performance analysis of proton exchange membrane (PEM) fuel cells with serpentine flow fields. The present CFD model considers the isothermal transport phenomena in a fuel cell involving mass, momentum transport, electrode kinetics, and potential fields. Co-current flow patterns for a PEMFC are considered for various geometries in the single straight cell. Current density distribution from the calculated distribution of oxygen and hydrogen mass fractions has been determined, where the activation overpotential has been also calculated within anode and cathode. CFD results showed that profiles differ from those simulations subjected to each the calculated activation overpotential. It is interesting that the present serpentine flow field shows the specific distribution of current density with respect to the aspect ratio of depth to width and the ratio of reaction area for various serpentine geometries. Simulation results were considered reasonable with the other CFD results reported in literature and global comparisons of the PEMFC model.

Experimental investigation on No-Vent Fill (NVF) process using liquid Nitrogen

  • Kim, Youngcheol;Seo, Mansu;Yoo, Donggyu;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.4
    • /
    • pp.71-77
    • /
    • 2014
  • For a long-term space mission, filling process of cryogenic liquid propellant is operated on a space vehicle in space. A vent process during transfer and filling of cryogenic propellant is needed to maintain the fuel tank pressure at a safe level due to its volatile characteristic. It is possible that both liquid and vapor phases of the cryogenic propellant are released simultaneously to outer space when the vent process occurs under low gravity environment. As a result, the existing filling process with venting not only accompanies wasting liquid propellant, but also consumes extra fuel to compensate for the unexpected momentum originated from the vent process. No-Vent Fill (NVF) method, a filling procedure without a venting process of cryogenic liquid propellant, is an attractive technology to perform a long-term space mission. In this paper, the preliminary experimental results of the NVF process are described. The experimental set-up consists of a 9-liter cryogenic liquid receiver tank and a supply tank. Liquid nitrogen ($LN_2$) is used to simulate the behavior of cryogenic propellant. The whole situation in the receiver tank during NVF is monitored. The major experimental parameter in the experiment is the mass flow rate of the liquid nitrogen. The experimental results demonstrate that as the mass flow rate is increased, NVF process is conducted successfully. The quality and the inlet temperature of the injected $LN_2$ are affected by the mass flow rate. These parameters determine success of NVF.

Numerical Analysis on the Flow Distribution in a 1 kWe SOFC Stack of Internal Manifolds According to the Variation of Manifold Sizes (매니폴드 크기에 따른 1 kWe급 내부 매니폴드형 고체산화물 연료전지 스택 유량 분배에 관한 수치 해석)

  • KIM, YOUNG JIN;YIN, HAOYUAN;KIM, HYEON JIN;YUN, KYONG SIK;YU, JI HAENG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.1
    • /
    • pp.47-54
    • /
    • 2022
  • In this study, we performed numerical analysis for 1 kWe SOFC stack of internal manifold types according to the different manifold sizes to verify the influence of the flow uniformity into each cell. To simulate the flow phenomena in the stack, the continuity and momentum conservation equations including the standard k-𝜺 turbulent model for the steady-state conditions were applied. From the calculation results, we verified that the pressure drop from inlet pipes to outlet pipes decreased to a log scale as the manifold size increased in the internal manifold types. Also, we found that the flow uniformity increased on an exponential scale as the manifold size increased. In addition, the calculation results showed that the flow uniformity gradually improved as the fuel and oxygen utilization increased.