• 제목/요약/키워드: Fuel injection duration

검색결과 107건 처리시간 0.02초

대형 디젤엔진의 NOx 저감을 위한 연료분사노즐 최적화 연구 (The Optimization of Fuel Injection Nozzles for the Reduction of NOx Emissions in a Large Diesel Engine)

  • 윤욱현;김병석;김동훈;김기두;하지수
    • 한국자동차공학회논문집
    • /
    • 제12권6호
    • /
    • pp.60-65
    • /
    • 2004
  • Numerical simulations and experiments have been carried out to investigate the effect of fuel injection nozzles on the combustion and NOx formation processes in a medium-speed marine diesel engine. Spray visualization experiment was performed in the constant-volume high-pressure chamber to verify the numerical results on the spray characteristics such as spray angle and spray tip penetration. Time-resolved spray behaviors were captured by high-speed digital camera and analyzed to extract the information on the spray parameters. Spray and combustion phenomena were examined numerically using FIRE code. Wave breakup and Zeldovich models were adopted to describe the atomization characteristics and NOx formation processes. Numerical results were verified with experimental data such as cylinder pressure, heat release rate and NOx emission. Finally, the effects of fuel injection nozzles on the engine performance were investigated numerically to find the optimum nozzle parameters such as fuel injection angle, nozzle hole diameter and number of nozzle holes. From this study, the optimum fuel injection nozzle (nozzle hole diameter, 0.32 mm, number of nozzle holes, 8 and fuel injection angle, $148^{\circ}$) was selected to reduce both the fuel consumption and NOx emission. The reason for this selection could be explained from the highest fuel-air mixing in the early phase of injection due to the longest spray tip penetration and the highest heat release rate after $19^{\circ}$ ATDC due to the increased injection duration.

DME 연료의 거시적 분무특성에 관한 실험적 연구 (Experimental Study on the Macroscopic Spray Characteristics of DME Fuel)

  • 박정환;박수한;이창식;박성욱
    • 한국분무공학회지
    • /
    • 제15권3호
    • /
    • pp.115-123
    • /
    • 2010
  • The purpose of this study is to compare and to investigate spray characteristics of dimethyl ether (DME) and diesel fuel in the various injection pressures, ambient pressures, and the energizing durations. For the analysis of the spray characteristics, the spray visualization system including the high speed camera and the spray image analyzer is installed. The spray characteristics such as the spray development process, spray tip penetraion and the spray cone angle are analyzed from the spray images. It was revealed that the spray characteristics of DME and diesel fuels are mainly affected by the injection conditions. However, in the region after the end of the injection, the spray tip penetration was affected by the fuel properties such as the fuel density, the surface tension, and the viscosity. DME fuel has generally a short tip penetration and a wide cone angle. In the elevating conditions of the ambient gas pressure, the spray cone angle of DME fuel converged to high value when comparing diesel fuel in advance. Also, the increasing rate of the spray tip penetration in DME fuel is significantly decreased from 0.7 ms of the energizing duration (diesel : 0.9 ms).

액상부탄 분사시스템의 수치시뮬레이션 및 분무특성 예측 (Simulation of Fuel Injection System and Model of Spray Behavior in Liquefied Butane)

  • 김종현;구자예
    • 한국분무공학회지
    • /
    • 제3권2호
    • /
    • pp.24-33
    • /
    • 1998
  • The characteristics of liquefied butane spray are expected to be different from conventional diesel fuel spray, because a kind of flash boiling spray is expected when the back pressure is below the saturation vapor pressure of the butane(0.23MPa at $25^{\circ}C$). An accumulator type pintle injector and its fuel delivery system has been simulated in ruder to give injection pressure, needle lift and rate of fuel injected. The governing equation were solved by finite difference metho. The injection duration was controlled by solenoid valve. Spray behaviors such as a transient spray tip penetration, spray angle and SMD were calculated based on the empirical correlations in case that the back pressure is both above the vapor pressure of the butane and below that of butane. When the back preassure is below the vapor pressure of the fuel, conventional correlation is modified to represent the effect of flash boiling.

  • PDF

직분식 CNG 엔진에서 연료 분사시기의 변화가 연소 및 출력 특성에 미치는 영향 (The Effect of Fuel Injection Timing on Combustion and Power Characteristics in a DI CNG Engine)

  • 강정호;윤수한;이중순;박종상;하종률
    • 한국자동차공학회논문집
    • /
    • 제15권1호
    • /
    • pp.193-200
    • /
    • 2007
  • Natural gas is one of the most promising alternatives to gasoline and diesel fuels because of its lower harmful emissions, including $CO_2$, and high thermal efficiency. In particular, natural gas is seen as an alternative fuel for heavy-duty Diesel Engines because of the lower resulting emissions of PM, $CO_2$ and $NO_x$. Almost all CNG vehicles use the PFI-type Engine. However, PFI-type CNG Engines have a lower brake horse power, because of reduced volumetric efficiency and lower burning speed. This is a result of gaseous charge and the time losses increase as compared with the DI-type. This study was conducted to investigate the effect of injection conditions (early injection mode, late injection mode) on the combustion phenomena and performances in the or CNG Engine. A DI Diesel Engine with the same specifications used in a previous study was modified to a DI CNG Engine, and injection pressure was constantly kept at 60bar by a two-stage pressure-reducing type regulator. In this study, excess air ratios were varied from 1.0 to the lean limit, at the load conditions 50% throttle open rate and 1700rpm. The combustion characteristics of the or CNG Engine - such as in-cylinder pressure, indicated thermal efficiency, cycle-by-cycle variation, combustion duration and emissions - were investigated. Through this method, it was possible to verify that the combustion duration, the lean limit and the emissions were improved by control of injection timing and the stratified mixture conditions. And combustion duration is affected by not only excess air ratio, injection timing and position of piston but gas flow condition.

디젤 인젝터의 분사율 특성에 관한 연구 (A Study on Injection Rate Characteristics of a Diesel Injector)

  • 정재우;김남호;임창현;김덕진
    • 한국분무공학회지
    • /
    • 제20권4호
    • /
    • pp.217-222
    • /
    • 2015
  • In this study, Injection rate tests of a Diesel common-rail injector have been performed with injection volume measurement type injection rate test system EMI21 for construction of injector model can be used in an engine calibration mean valued model. The measuring principle of the test system is based on measurement of dispalcement of a movable measurement piston by the volume of fluid released by the injector. From these injection rate test results, the characteristics on shape of instantaneous injection rate and injection fuel amount have been investigated and injection fuel amount calculation equation based on test results has been newly constructed. This equation is very simple and calculation error is less than 5% with test results for wide range injection pressure (200~1800 bar) and injection duration ($200{\sim}1800{\mu}s$) conditions. So, it is anticipated that newly constructed simple injection fuel amount model in this study can be efficiently used on engine calibration and control model.

고압 분사 디잴 인잭터의 노즐 형상이 분사 특성 및 분무 거동에 미치는 영향 (Effect of nozzle geometry on the injection characteristics and spray behavior)

  • 이창식;박성욱;전문수
    • 한국분무공학회지
    • /
    • 제9권1호
    • /
    • pp.1-7
    • /
    • 2004
  • This paper describes the characteristics of injection rate and macroscopic behavior of fuel spray injected from common-rail type diesel injectors with different nozzle geometries. The injection rates according to the nozzle geometries were measured at different energizing duration of the injector solenoid and injection pressure by using the Bosch's injection rate meter based on the pressure variation in the tube. The spray behaviors injected from the different nozzles were visualized using the spray visualization system composed of an Ar-ion laser, an ICCD camera, and a synchronization system at various injection and ambient pressures. It is revealed that VCO nozzle has higher spray tip velocity at the early stage of injection duration and wider spray cone angle than the mini-sac nozzles. Also the spray cone angle is increased with the increase of nozzle diameter.

  • PDF

바이오디젤 연료 분무의 거동특성 연구 (A Study of Behavior Characteristics of Biodiesel Fuel Spray)

  • 염정국
    • 동력기계공학회지
    • /
    • 제18권5호
    • /
    • pp.156-163
    • /
    • 2014
  • Diesel engine is most suitable one for biodiesel fuel because the compression-ignition diesel engine has desirable fuel consumption due to higher thermal efficiency and in addition, the improvement of the fuel consumption also leads to a reduction of $CO_2$ emission and then it does not need to have spark-ignition system, which means that there is less charge on the technic and complexity. In this study, the spray behavior characteristics of the vegetable palm oil were analyzed by using a common-rail injection system of commercial diesel engine and the results were compared with those obtained for the diesel fuel. The injection pressures and blend ratios of palm oil and diesel(BD3, BD5, BD20, BD30, BD50, and BD100) were the main parameters. The experiments were conducted for different injection pressures: 500bar, 1000bar, 1500bar, and 1600bar by setting injection duration to $500{\mu}s$. Consequently, it was found that there is no significant difference in the macro characteristics of the spray behavior(spray penetration and spray angle) in response to change in the blend ratio of palm oil and diesel at a fixed injection pressure. In particular, all experiments showed the spray angle about $12^{\circ}{\sim}13^{\circ}$.

CAI 연소 방법을 이용한 성층 연소를 통한 운전 영역 확대, 연소 및 배기 특성에 관한 실험적 연구 (An Experimental Study on the Extend of the Operating Region and Emission Characteristics Through Ohe Stratined Combustion Using Controlled Auto-Ignition Method)

  • 정해영;이기형;이창희
    • 대한기계학회논문집B
    • /
    • 제30권5호
    • /
    • pp.465-471
    • /
    • 2006
  • Controlled auto-ignition(CAI) combustion, offers the potential to improve fuel economy and reduce emission simultaneously. In this study, CAI-combustion was achieved in a single cylinder gasoline DI engine with modified camshafts in order to restrict the gas exchange process. We investigated the effects of air-fuel ratio, residual EGR rate and injection timing such as early injection and late injection on the attainable CAI combustion region. The effect of injection timings on combustion characteristic such as start of combustion, combustion duration and heat release rate was also investigated. From the result early injection causes the mixture to ignite earlier and burn more quickly due to the exothermic reaction during the recompression and gives rise to good mixing of the fuel/air. On the other hand, late injection extended the operation region more than early injection but the emissions of HC and NOx were more or less increased than early injection.

고속 고부하 상태의 DISI 엔진에서 메탄올-가솔린 혼합연료의 연료 혼합비와 2단 분사가 엔진 내부유동 및 연소특성에 미치는 영향 (The Effect of Mixing Rate and Multi Stage Injection on the Internal Flow Field and Combustion Characteristics of DISI Engine Using Methanol-gasoline Blended Fuel at High Speed / High Load Condition)

  • 배진우;서주형;이재성;김호영
    • 한국자동차공학회논문집
    • /
    • 제21권5호
    • /
    • pp.15-24
    • /
    • 2013
  • Numerical studies were conducted to investigate the internal flow field and combustion characteristics of DISI engine with methanol blended in gasoline. Dual injection was applied and the characteristics were compared to single injection strategy. The amount of the fuel injection was corresponded to air-fuel ratio of each fuel for complete combustion. The preforming model in this study, software STAR-CD was employed for both modeling and solving. The operating speed condition were at 4000 rpm/WOT (Wide open throttle) where the engine was fully warmed. The results of single injection with M28 showed that the uniformity, equivalence ratio, in-cylinder pressure and temperature increased comparing to gasoline (M0). When dual injection was applied, there was no significant change in uniformity and equivalence ratio but the in-cylinder pressure and temperature increased. When M28 fuel and single injection was applied, the CO (Carbon monoxide) and NO (Nitrogen oxides) emission inside the combustion chamber increased approximately 36%, 9% comparing with benchmarking case in cylinder prior to TWC (Three Way Catalytic converter). When dual stage injection was applied, both CO and NO emission amount increased.

커먼레일 디젤엔진의 DME와 디젤연료의 분무 및 연소 특성 (Spray and Combustion Characteristics of DME and Diesel Fuel in a Common-Rail Diesel Engine)

  • 김명윤;하성용;이창식
    • 한국분무공학회지
    • /
    • 제12권1호
    • /
    • pp.30-37
    • /
    • 2007
  • Dimethyl ether (DME) as an alternative fuel for compression ignition engine was investigated by measuring spray development processes, injection rate profiles, engine performance, and exhaust emission characteristics. The results of DME fueled engine were compared with those obtained by fueled with diesel. The experimental results showed that DME has approximately 0.03ms shorter injection delay and higher maximum injection rate than those of diesel fuel at a constant injection pressure of 50MPa. The spray visualization indicates that DME has shorter spray tip penetration due to its low density and faster evaporation. The combustion characteristics of DME operated engine provided faster ignition delay and three times shorter combustion duration. It is believed that the better evaporation and atomization characteristic of DME contributes the faster combustion. At all operating condition, soot emission was not detected due to the clean combustion of DME.

  • PDF