• 제목/요약/키워드: Fuel flow control

검색결과 385건 처리시간 0.027초

인공신경망 PID를 이용한 무인항공기 터보제트 엔진 제어 (Turbojet Engine Control of UAV using Artificial Neural Network PID)

  • 김대기;홍교영;안동만;홍승범;지민석
    • 한국항행학회논문지
    • /
    • 제18권2호
    • /
    • pp.107-113
    • /
    • 2014
  • 본 논문에서는 무인항공기용 소형 터보제트엔진에 대해 압축기 서지현상 및 화염소실을 방지하면서 과도응답 특성을 개선하는 제어기를 설계하였다. 인공신경망과 PID 제어 알고리즘을 적용하는 터보제트엔진 제어기를 설계하고 인공신경망 역전파 알고리즘을 사용하였다. 터보제트 엔진의 가 감속 시 서지현상과 flame-out 현상을 방지하기 위해 연료 유량 제어 입력을 인공신경망 PID 제어기로 생성한다. 생성된 연료 유량 제어 입력은 신속하고 안전하게 원하는 속도로 수렴할 수 있도록 제어기를 설계한다. MATLAB을 이용한 시뮬레이션을 통해 이득 값에 따른 응답특성 비교 분석 및 신속하고 안전하게 원하는 속도로 수렴하는 제어성능을 확인하였다.

전자제어식 냉각시스템이 연비에 미치는 영향에 관한 연구 (A STUDY ON THE IMPROVEMENT OF FUEL ECONOMY BY OPTIMIZING AN ELECTRIC ENGINE COOLING SYSTEM)

  • 인병덕;이기형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3001-3006
    • /
    • 2008
  • Recently, the internal combustion engines have focused on reducing both the CO2 emissions in order to cope with severe regulations for greenhouse effect. Therefore, various new technologies have been developed in many countries. Among them, the cooling system is spotlighted because it has great effect on fuel efficiency. However, the present engine cooling system is almost same as one of the 50 years ago. The needs for high performance and compact size make it important to improve engine cooling system, down-sizing and control method of coolant flow. Thus, low fuel consumption technology such as control and synthetic management of cooling system was necessary to satisfy with these needs. In this study, we applied electric thermostat to improve the fuel economy. The fuel consumption was compared after driving FTP-75 mode on both conditions which were with a conventional wax thermostat and with a electric thermostat. The coolant temperature of opening the electric thermostat is higher.

  • PDF

Measurement of suction air amount at reciprocating engine under stationary and transient operation

  • Kubota, Yuzuru;Hayashi, Shigenobu;Kajitani, Shuichi;Sawa, Norihiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.1037-1042
    • /
    • 1990
  • The air-fuel ratio of an internal combustion engine must be controlled with accuracy for the improvements of exhaust emission and fuel consumption. Therefore, it is necessary to measure the exact instantaneous amounts of fuel and suction air, so we carried out the experiments for measuring the air flow velocity in a suction pipe of an internal combustion engine using three types of instantaneous air flowmeter. The results obtained can be summarized as follows: (1) The laminar-flow type flowmeter is able to measure both the average and the instantaneous flow rate, but it is necessary to rectify the pulsating air flow in the suction pipe. (2) The a spark-discharge type flow velocity meter is able to measure the instantaneous air velocity, but it is necessary to choose the suitable electrode form and the spark character. (3) The tandem-type hot-wire flow velocity meter indicates the instantaneous flow velocity and its flow direction.

  • PDF

플레넘 챔버 내의 유동 특성에 관한 실험적 연구 (An Experimental Study on the Flow characteristics in the Plenum Chamber)

  • 정재우;이기형;이창식
    • 한국자동차공학회논문집
    • /
    • 제7권7호
    • /
    • pp.24-31
    • /
    • 1999
  • The MPI engine becomes increasingly popular because it meets two requirements of stringent pollutant emission and the lower fuel consumption. Even though supplies the same amount of fuel to each cylinder , it is hard to precisely control the air-duel ration due to the different amount of air flowing into each cylinder. The uniformity of air-fuel ration in each cylinder is considerably affected by the plenum chamber configuration . This study is focused on experimentally analyzing the flow characteristics within the plenum chamber In the present experiment , steady and valve dynamic state flow tests are performed and the flow field inside the plenum chamber is visualized and measured by utilizing a laser sheet visualization technique and a PTV method. These measured results indicate that the flow structure in the plenum chamber is highly influenced by the plenum chamber configurations, suction flow rates, crank speeds and so on.

  • PDF

흡기포트 분사방식의 가솔린 엔진에서 급가속시 연료 거동에 관한 연구 (A Study on Fuel Transport Characteristics in a Port Fuel Injected Sl Engine during Transient Condition)

  • 황승환;조용석;이종화
    • 한국자동차공학회논문집
    • /
    • 제11권3호
    • /
    • pp.20-27
    • /
    • 2003
  • In this paper, the fuel transport characteristics during transient condition was studied by using a Fast Response Flame Ionization Detector(FRFID). The quantitative measurement method for the inducted fuel mass into cylinder is studied. The inducted fuel mass into the cylinder was estimated by using calculated air-fuel ratio by hydrocarbon concentration of cylinder and air flow model. In order to estimate the transportation of injected fuel from the intake port into cylinder, the wall wetting fuel model was used. The two coefficient $\alpha$,$\beta$) of the wall-wetting fuel model was determined from the measured fuel mass that was inducted into the cylinder at the first cycle after injection cut-off To reduce an air/fuel ratio fluctuation during rapid throttle opening, the appropriate fuel injection rate was obtain from the wall wetting model with empirical coefficients. Result of air/fuel ratio control, air/fuel excursion was reduced.

배기가스 내 산소 농도 기반 메탄-수소 연료 전환 제어 프로그램 개발 (Development of Control Program for Methane-hydrogen Fuel Conversion Based on Oxygen Concentration in Exhaust Gas)

  • 신은주;김영배
    • 한국수소및신에너지학회논문집
    • /
    • 제34권1호
    • /
    • pp.38-46
    • /
    • 2023
  • Carbon neutrality policies have been strengthened to reduce emissions, and the importance of technology road maps has been emphasized. In the global industrial boiler market, carbon neutrality is implemented through fuel diversification of methane-hydrogen mixture gas. However, various problems such as flashback and flame unstability arise. There is a limit to implementing the actual system as it remains in the early stage. Therefore, it is necessary to secure the source technology of methane-hydrogen hybrid combustion system applicable to industrial fields. In this study, control program for methane-hydrogen fuel conversion was developed to expect various parameters. After determining the hydrogen mixing ratio and the input air flow, the fuel conversion control algorithm was constructed to get the parameters that achieve the target oxygen concentration in the exhaust gas. LabVIEW program was used to derive correlations among hydrogen mixing rate, oxygen concentration in exhaust gas, input amount of air and heating value.

Intelligent Control of Power Plant Using Immune Algorithm Based Multiobjective Fuzzy Optimization

  • Kim, Dong-Hwa
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.525-530
    • /
    • 2003
  • This paper focuses on design of nonlinear power plant controller using immune based multiobjective fuzzy approach. The thermal power plant is typically regulated by the fuel flow rate, the spray flow rate, and the gas recirculation flow rate. However, Strictly maintaining the steam temperature can be difficult due to heating value variation to the fuel source, time delay changes in the main steam temperature. the change of the dynamic characteristics in the steam-turbine system. Up to the present time, PID Controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error. These parameters tuned by multiobjective based on immune network algorithms could be used for the tuning of nonlinear power plant.

  • PDF

Remote-controlled micro locking mechanism for plate-type nuclear fuel used in upflow research reactors

  • Jin Haeng Lee;Yeong-Garp Cho;Hyokwang Lee;Chang-Gyu Park;Jong-Myeong Oh;Yeon-Sik Yoo;Min-Gu Won;Hyung Huh
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4477-4490
    • /
    • 2023
  • Fuel locking mechanisms (FLMs) are essential in upward-flow research reactors to prevent accidental fuel separation from the core during reactor operation. This study presents a novel design concept for a remotely controlled plate-type nuclear fuel locking mechanism. By employing electromagnetic field analysis, we optimized the design of the electromagnet for fuel unlocking, allowing the FLM to adapt to various research reactor core designs, minimizing installation space, and reducing maintenance efforts. Computational flow analysis quantified the drag acting on the fuel assembly caused by coolant upflow. Subsequently, we performed finite element analysis and evaluated the structural integrity of the FLM based on the ASME boiler and pressure vessel (B&PV) code, considering design loads such as dead weight and flow drag. Our findings confirm that the new FLM design provides sufficient margins to withstand the specified loads. We fabricated a prototype comprising the driving part, a simplified moving part, and a dummy fuel assembly. Through basic operational tests on the assembled components, we verified that the manufactured products meet the performance requirements. This remote-controlled micro locking mechanism holds promise in enhancing the safety and efficiency of plate-type nuclear fuel operation in upflow research reactors.

Plunger 타입 유량조절장치를 적용한 덕티드 로켓용 가스발생기 개발 및 성능분석 : Part I (Development and Performance Analysis of Gas Generator with Plunger-type Flow Control Valve for Ducted Rocket : Part I)

  • 이정표;한승주;조성봉;김경무;임재일;이기연
    • 항공우주시스템공학회지
    • /
    • 제15권3호
    • /
    • pp.79-86
    • /
    • 2021
  • 추력조절이 가능한 가변유동형 덕티드 로켓(VFDR; Variable Flow Ducted Rocket)의 기초연구 목적으로 가스발생기와 유량조절장치를 개발하여 지상연소시험을 수행하였다. 연소시험을 통하여 본 개발에 대한 내열성, 연소시간, 압력 및 온도와 같은 성능 요구조건의 충족 여부를 확인하였으며 Boron/MgAl/AP 등을 혼합한 연료농후 고체추진제의 연소특성을 분석하였다. 유량조절장치는 Plunger 타입으로 개발하여 토출면적 조절로 유량 및 압력을 제어할 수 있음을 확인하였다. 그러나 토출 유로 내 연소 생성물 부착으로 인한 토출면적 감소에 따라 압력 안정화 구간 없이 연소압력이 증가하는 경향을 나타내었다. 토출면적 감소로 인한 압력증가의 연소특성 분석은 본 논문의 Part 2에서 다루어진다.

고체산화물 연료전지/마이크로 가스터빈 하이브리드 시스템의 성능 해석 (Performance Analysis of a Solid Oxide Fuel Cell/Micro Gas Turbine Hybrid System)

  • 양진식;송태원;김재훈;손정락;노승탁
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.273-276
    • /
    • 2005
  • Performance analysis of a solid oxide fuel cell/micro gas turbine hybrid system is conducted at design-point and part-load conditions and its results are discussed in this study. With detailed considerations of the heat and mass transfer phenomena along various flow streams of the SOFC, the analysis based on a quasi-2D model reasonably predicts its performance at the design-point operating conditions. In case of part-load operations, performance of the hybrid system to three different operation modes(fuel only control, speed control, and VIGV control) is compared. It is found that the simultaneous control of both supplied fuel and air to the system with a variable MGT rotational speed mode is the optimum choice for the high performance operation. And then, the dynamic characteristics of a solid oxide fuel cell are briefly introduced.

  • PDF