• Title/Summary/Keyword: Fuel evaporation rate

Search Result 75, Processing Time 0.024 seconds

Spray Characteristics of Diesel Fuel in a Cylinder under Cryogenic Intake Air Temperature Conditions (극저온의 흡기 온도 조건에서 실린더 내 디젤 연료의 분무 특성)

  • Min, Se Hun;Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.26 no.1
    • /
    • pp.18-25
    • /
    • 2021
  • The objective of this study is to investigate the effect of cryogenic intake air temperature on the injected fuel droplet behavior in a compression ignition engine under the different start of energizing timing. To achieve this, the intake air temperatures were changed from -18℃ to 18℃ in steps of 9℃, and the result of fuel evaporation rate, Sauter mean diameter, and equivalence ratio distributions were compared. When the intake air temperature decreased in steps of 9℃, less fuel was evaporated by about 3.33% because the cylinder temperature was decreased. In addition, the evaporated fuel amount was increased with retarding the start of energizing timing because the cylinder temperature raised. However, the difference was decreased according to the retarded start of energizing timing because the cylinder pressure was also increased at the start of fuel injection. The equivalence ratio was reduced by 5.94% with decreasing the intake air temperature. In addition, the ignition delay was expected to longer because of the deteriorated evaporation performance and the reduced cylinder pressure by the low intake air temperature.

Simulation for Fuel Droplet Evaporation in Cylinder (실린더내의 연료 액적의 기화 과정에 관한 수치 연구)

  • 전흥신;김형택
    • Journal of Energy Engineering
    • /
    • v.11 no.1
    • /
    • pp.74-80
    • /
    • 2002
  • In this study, a numerical method for fuel droplet evaporation in cylinder of S.I. engine is presented. This study was newly defined non-dimensional critical droplet lifetime and modeled heating and evaporation processes of fuel droplet during intake and compression stroke of gasoline engine. The simulation results show that simultaneous increase of gas temperature and pressure in compression stroke seems to have compensative effect on droplet gasification rate. The environment variations in cylinder have little effect on the fuel droplet gasification process. The droplet size for full evaporation at the end of compression stroke can be estimated using this program.

A Study on the Effect of Injection Rate on Emission Characteristics in D.I. Diesel Engine by Multi-zone Model (Multi-zone 모델에 의한 디젤엔진에서의 분사율 변화에 따른 배기가스 특성에 관한 연구)

  • ;;;;Liu Shenghua
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.94-103
    • /
    • 1999
  • A model for the prediction of combustion and exhaust emissions of DI diesel engine has been formulated and developed . This model is a quasi-dimensional phenomenological one and is based on multi-zone combustion modelling concept. It takes into consideration, on a zonal basis ,detailed of fuel spray formation, droplet evaporation, air-fuel mixing, spray wall interaction, swirl , heat transfer, self ignition and burning rate . The emission model is considered with chemical equipment , as well as the kinetics of fuel. NO and soot reactions in order to calculate the pollutant concentrations within each zone and the whole of cylinder . The accuracy of prediction versus experimental data and the capability of the model in predicting engine heat release, cylinder pressure and all the major exhaust emissions on zonal and cumulative basis., is demonstrated. Detailed prediction results showing the sensitivity of the model bv various injection rates are presented and discussed.

  • PDF

A Study on Combustion Characteristics of Methanol Blended Fuel in Constant Volume Combustion Chamber (메탄을 혼합연료를 이용한 정적연소실내에서의 연소 특성에 관한 연구)

  • Cho Haeng Muk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.154-160
    • /
    • 2005
  • The result of combustion experiment by using the methanol-gasoline blended fuel showed that the supplying pressure appeared the maximum pressure between equivalent rate 1.1 and 1.2. and the evaporation of the fuel has been known to have been greatly influenced by surrounding temperature and the combustion chamber temperature after being injected from the injector And it is confirmed that the rate of evaporation had been suddenly dropped according to the temperature in the combustion chamber though the injected foe) had been fully evaporated Such tendency has visibly appeared when the zone is leaner. and we recognize that the rich fuel supply is needed in the operation of cold operating.

Fuel Evaporation Characteristics of a Port Injection Type Motorcycle Engine with Changing Fuel Spray Timing (포트분사식 이륜차 엔진의 연료 분사시기에 따른 연료 증발 특성)

  • Lee Kihyung;Kang Inbo;Kim Hyungmin;Baik Seungkook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.12 s.243
    • /
    • pp.1360-1368
    • /
    • 2005
  • This study investigates the characteristics of spray, such as evaporation rate and spray trajectory, for a 4-hole injector which is applied to a 4-valve motorcycle gasoline engine. Three dimensional, unsteady, compressible flow and spray within the intake-port and cylinder have been simulated using the VECTIS code. Spray characteristics were investigated at 6000 rpm engine speed. Furthermore, we visualized fuel behavior in the intake-port using a CCD camera synchronized with a stroboscope in order to compare with the analytical results. Boundary and intial conditions were employed by complete 1-D simulation of the engine using the WAVE code. Fuel was injected into the intake-port at two time intervals relative to the position of the intake valves so that the spray arrived when the valves were closed and fully open. The results showed that the trajectory of the spray was directed towards the lower wall of the port with injection against the closed valves. With open valve injection, a large portion of the fuel was lifted by the co-flowing air towards the upper half of the port and this was confirmed by simulation and visualization.

Spray and Combustion Characteristics of DME and Diesel Fuel in a Common-Rail Diesel Engine (커먼레일 디젤엔진의 DME와 디젤연료의 분무 및 연소 특성)

  • Kim, Myung-Yoon;Ha, Sung-Yong;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.12 no.1
    • /
    • pp.30-37
    • /
    • 2007
  • Dimethyl ether (DME) as an alternative fuel for compression ignition engine was investigated by measuring spray development processes, injection rate profiles, engine performance, and exhaust emission characteristics. The results of DME fueled engine were compared with those obtained by fueled with diesel. The experimental results showed that DME has approximately 0.03ms shorter injection delay and higher maximum injection rate than those of diesel fuel at a constant injection pressure of 50MPa. The spray visualization indicates that DME has shorter spray tip penetration due to its low density and faster evaporation. The combustion characteristics of DME operated engine provided faster ignition delay and three times shorter combustion duration. It is believed that the better evaporation and atomization characteristic of DME contributes the faster combustion. At all operating condition, soot emission was not detected due to the clean combustion of DME.

  • PDF

The Experimental Study of Atomization Characteristics of Gasoline Spray Impinging on Glow Plug

  • Moon, Young-ho;Oh, Young-taig
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.270-278
    • /
    • 2002
  • In order to reduce the exhaust emissions of a spark ignition engine, it is important not only to improve the catalyst conversion efficiency, but also to directly reduce the engine-out exhaust emissions during a cold starting of the engine and warm up periods. The purpose of this study is to evaluate feasibility of a glow plug for an early fuel evaporator. In order to promote atomization, gasoline is injected on the glow plug with room temperature(20$\^{C}$) and high temperature(250$\^{C}$). To analyze the spray behavior characteristics, a PMAS is used to measure the SMD and the dropsize distribution of an impinging spray and a free spray. Results show that the evaporation rate of the impinging spray on the high temperature surface of the glow plug was higher than that of the free spray on the room temperature surface.

A Study on Atomization Characteristics of Gasoline Impinging Spray Using Glow plug (글로우플러그를 이용한 충돌분무의 미립화특성에 관한 연구)

  • 문영호;오영택
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.54-61
    • /
    • 2001
  • It is reported that during the cold starting, especially in gasoline engine, the engine response and the effect of HC emission can be improved by prompting atomization and reducing the quantity of fuel adhered to the range of injector tip, inlet port, and inlet valve. The purposes of this study are to promote atomization of fuel before air-fuel mixture in the inlet port. In order to achieve its goal, the glow plug is to evaluate the feasibility of for the early fuel evaporator and the spray behavior characteristics of gasoline, injected on the surface of glow plug with room temperature(2$0^{\circ}C$) and high temperature(25$0^{\circ}C$) is to examine. Particle motion analysis system(PMAS) was used to measure the SMD and the dropsize distribution of impinging spray and free spray. The results of this experiment, evaporation rate of impinging spray was higher than that of free spray, and the higher evaporation rate win, the smaller peak dropsize was. Especially, during early spray SMD of impinging spray was still smaller than that of fee spray.

  • PDF

Experimental Study on Evaporation and Combustion Characteristics of Fuel Droplet with Carbon Nano-particle in RCM (급속압축장치에서 탄소 나노입자가 첨가된 연료 액적의 증발 및 연소 특성에 관한 실험적 연구)

  • Ahn, Hyeongjin;Won, Jonghan;Beak, Seungwook;Kim, Hyemin
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.209-211
    • /
    • 2015
  • Evaporation characteristics of a single droplet of carbon nanofluids were investigated in a rapid compression machine(RCM). n-Heptane and carbon black N990 were used to synthesize the carbon nanofluids. RCM is an experimental set-up to simulate a single compression stroke of reciprocating engine. Temperature and pressure in a reaction chamber were measured during the compression stroke. After the piston reaches top dead center(TDC), temperature and pressure decreased due to the heat loss at wall. In that process, a single droplet of carbon nanofluids underwent unsteady condition. A single droplet was put at the center of reaction chamber. Thermocouple whose tip is $50{\mu}m$ was used not only to measure transient bulk temperature, but also to suspend the droplet. The picture of single droplet was taken using high speed camera with a frame rate of 500 fps. From those pictures, the droplet diameter was measured by visual basic program.

  • PDF

A Study on the Engine Performance and Emission of Gasoline-Methanol Blend in Vehicle Engine (자동차 엔진의 혼합연료가 엔진 성능과 배기가스에 미치는 영향에 관한 연구)

  • Cho, H.M.
    • Journal of ILASS-Korea
    • /
    • v.4 no.3
    • /
    • pp.24-31
    • /
    • 1999
  • The engine performance and combustion characteristics of methanol blended fuel of spark ignition engine were discussed on the basics of experimental investigation. The effects of methanol blending fuel on combustion in cylinder were investigated under various conditions of engine cycle and blending fuel on combustion in cylinder were investigated tinder various conditions of engine cycle and blending ratios. The results showed thai the engine performance was influenced by the methanol blending ratio and the variations of operating conditions test engine. The increase of fuel temperature brought on the improvement of combustion characteristics such as cylinder pressure. the rate of pressure rise and heat release in an engine. The burning rate of fuel-air mixture, the exhaust emissions and the other characteristics of performance were discussed also.

  • PDF