• Title/Summary/Keyword: Fuel elements

Search Result 357, Processing Time 0.023 seconds

Study on Core Debris Recriticality During Hypothetical Severe Accidents in Three Element Core Design of The Advanced Neutron Source Reactor

  • Shin, Sung-Tack
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.467-472
    • /
    • 1996
  • This study discusses special aspects of severe accident related recriticality modeling and analysis in the Advanced Neutron Source (ANS) reactor.$^{1, 2)}$ The analytical comparison of three elements core to former two elements case is conducted including evaluation of suitable nuclear cross-section sets to account for the effects of system configulation, fuel and moderator mixture temperature, material dispersion and the other thermal-hydraulics. Three elements core ANS reactor is the alternative core design which was proposed as a modified core design, with three fuel elements instead of two, that would allow operation with only 50% enriched uranium (former uranium fuel is the baseline design value of 93%) A comprehensive test matrix of calculations to evaluate the threat of a criticality event in the ANS is described. Strong dependencies still on geometry, material constituents, and thermal-hydraulic conditions are verified. Therefore, the concepts of mitigative design features are qualified.d.

  • PDF

Review of Calculational Model for the Performance of CANDU-Type Nuclear Development and Parametric Study on the Fuel Performance (CANDU형 핵연료거동에 관한 계산모형의 검토 및 거동특성에 관한 변수적 연구)

  • Man Sung Yim;Un Chul Lee;Ho Chun Suk
    • Nuclear Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.57-69
    • /
    • 1983
  • The LWR fuel performance analysis computer code, FRAPCON-1, are evaluated to investigate the performance of CANDU fuel elements loaded in Wolsung-1 reactor. The FRAPCON-1 models of neutron flux depression in fuel and of fuel-to-cladding heat transfer are modified, and the validity of fission gas release model for CANDU fuel is evaluated. And the heavy water properties are provided in calculating the heat transfer coefficient between cladding and coolant. By using the modified code, FRAPCON-1-CSK, the sensitivity studies are carried out for Wolsung-1 fuel element design parameters. The performance analysis is also performed for Wolsung-l fuel elements. The calculated results are discussed in terms of. LWR fuel design criteria because of unavailability of CANDU fuel design criteria.

  • PDF

Power upgrading of WWR-S research reactor using plate-type fuel elements part I: Steady-state thermal-hydraulic analysis (forced convection cooling mode)

  • Alyan, Adel;El-Koliel, Moustafa S.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1417-1428
    • /
    • 2020
  • The design of a nuclear reactor core requires basic thermal-hydraulic information concerning the heat transfer regime at which onset of nucleate boiling (ONB) will occur, the pressure drop and flow rate through the reactor core, the temperature and power distributions in the reactor core, the departure from nucleate boiling (DNB), the condition for onset of flow instability (OFI), in addition to, the critical velocity beyond which the fuel elements will collapse. These values depend on coolant velocity, fuel element geometry, inlet temperature, flow direction and water column above the top of the reactor core. Enough safety margins to ONB, DNB and OFI must-emphasized. A heat transfer package is used for calculating convection heat transfer coefficient in single phase turbulent, transition and laminar regimes. The main objective of this paper is to study the possibility of power upgrading of WWR-S research reactor from 2 to 10 MWth. This study presents a one-dimensional mathematical model (axial direction) for steady-state thermal-hydraulic design and analysis of the upgraded WWR-S reactor in which two types of plate fuel elements are employed. FOR-CONV computer program is developed for the needs of the power upgrading of WWR-S reactor up to 10 MWth.

Analysis of wear properties in Zr alloys with variation of Nb and Sn content (Zr 합금에서 Nb과 Sn의 함량에 따른 마멸특성분석)

  • Lee Young-Ho;Kim Hyung-Kyu
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.64-71
    • /
    • 2003
  • In order to evaluate the effect of alloying elements (Nb and Sn) on the wear resistance of advanced Zr fuel claddings, sliding wear tests have been performed in room temperature air and water and these results were compared with those of commercial alloys such as Zircaloy-4, A and B alloys. As a result, the advanced Zr fuel claddings have a similar wear resistance compared with the commercial alloys. The wear resistance of the advanced Zr fuel claddings is closely releted to the content of Nb and Sn even though the effects of transition elements are involved in deforming wear properties. In the tested specimens with similar Sn content, wear volume became down to a minimum at $0.4\;wt\;\%$ Nb, then rapidly increased at 1.0 wt Nb. This behavior results in the variation of grain size with alloying contents. But Sn did not have a significant effect on the wear volume of advanced Zr fuel claddings below $1.1\;wt\%$. The relationship between alloying elements and wear behaviour was evaluated and discussed using material compatibility factor.

  • PDF

Analysis of the Irradiated Nuclear Fuel Using the Heavy Atom and Neodynium Isotope Correlations with Burnup

  • Kim, Jung-Suk
    • Nuclear Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.327-335
    • /
    • 1997
  • The correlation of isotope composition of uranium, plutonium and neodymium with the burnup in M uranium dioxide fuel has been investigated experimentally. The total and fractional($^{235}$ U) burnup were determined by Nd-148 and, U and Pu mass spectrometric method respectively. The isotope compositions of these elements, after their separation from the fuel samples were measured by mass spectrometric. The content of the elements in the irradiated fuel ore determined by isotope dilution mass spectrometric method using $^{233}$ U, $^{242}$ Pu and $^{150}$ Nd as spikes. The content of plutonium in the irradiated fuel was expressed by the correlation with uranium isotopes. The correlations between isotope compositions themselves and the total and fractional burnup ore compared with those calculated from ORIGEN2 code.

  • PDF

FISSION PRODUCT AND ACTINIDE RELEASE FROM THE DEBRIS BED TEST PHEBUS FPT4: SYNTHESIS OF THE POST TEST ANALYSES AND OF THE REVAPORISATION TESTING OF THE PLENUM SAMPLES

  • Bottomley P.D.W.;Gregoire A.C.;Carbol P.;Glatz J.P.;Knoche D.;Papaioannou D.;Solatie D.;Van Winckel S.;Gregoire G.;Jacquemain D.
    • Nuclear Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.163-174
    • /
    • 2006
  • The $Ph{\acute{e}}bus$ FP project is an international reactor safety project. Its main objective is to study the release, transport and retention of fission products in a severe accident of a light water reactor (LWR). The FPT4 test was performed with a fuel debris bed geometry, to look at late phase core degradation and the releases of low volatile fission products and actinides. Post Test Analyses results indicate that releases of noble gases (Xe, Kr) and high-volatile fission products (Cs, I) were nearly complete and comparable to those obtained during $Ph{\acute{e}}bus$ tests performed with a fuel bundle geometry (FPT1, FPT2). Volatile fission products such as Mo, Te, Rb, Sb were released significantly as in previous tests. Ba integral release was greater than that observed during FPT1. Release of Ru was comparable to that observed during FPT1 and FPT2. As in other $Ph{\acute{e}}bus$ tests, the Ru distribution suggests Ru volatilization followed by fast redeposition in the fuelled section. The similar release fraction for all lanthanides and fuel elements suggests the released fuel particles deposited onto the plenum surfaces. A blockage by molten material induced a steam by-pass which may explain some of the low releases. The revaporisation testing under different atmospheres (pure steam, $H_2/N_2$ and steam /$H_2$) and up to $1000^{\circ}C$ was performed on samples from the first upper plenum. These showed high releases of Cs for all the atmospheres tested. However, different kinetics of revaporisation were observed depending on the gas composition and temperature. Besides Cs, significant revaporisations of other elements were observed: e.g. Ag under reducing conditions, Cd and Sn in steam-containing atmospheres. Revaporisation of small amounts of fuel was also observed in pure steam atmosphere.

MULTISCALE MODELLING FOR THE FISSION GAS BEHAVIOUR IN THE TRANSURANUS CODE

  • Van Uffelen, P.;Pastore, G.;Di Marcello, V.;Luzzi, L.
    • Nuclear Engineering and Technology
    • /
    • v.43 no.6
    • /
    • pp.477-488
    • /
    • 2011
  • A formulation is proposed for modelling the process of intra-granular diffusion of fission gas during irradiation of $UO_2$ under both normal operating conditions and power transients. The concept represents a simple extension of the formulation of Speight, including an estimation of the contribution of bubble motion to fission gas diffusion. The resulting equation is formally identical to the diffusion equation adopted in most models that are based on the formulation of Speight, therefore retaining the advantages in terms of simplicity of the mathematical-numerical treatment and allowing application in integral fuel performance codes. The development of the new model proposed here relies on results obtained by means of molecular dynamics simulations as well as finite element computations. The formulation is proposed for incorporation in the TRANSURANUS fuel performance code.

Structural Integrity Evaluation of Spent Nuclear Fuel Assembly Under Normal Transportation Drop Conditions

  • Cho, Sang Soon;Choi, Woo Seok;Seo, Ki-Seog;Yang, Yun-Young
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2017.05a
    • /
    • pp.155-156
    • /
    • 2017
  • In this study, the structural integrity of the spent nuclear fuel assemblies was evaluated by carrying out a 0.3 m drop impact analysis, one of the normal transportation conditions of the nuclear fuel assemblies. For this purpose, the spent nuclear fuel assembly was modeled in detail as beam elements, and a coupled model for impact analysis was developed by inserting the modeled nuclear fuel assemblies into a cask.

  • PDF

ANALYSIS OF HIGH BURNUP PRESSURIZED WATER REACTOR FUEL USING URANIUM, PLUTONIUM, NEODYMIUM, AND CESIUM ISOTOPE CORRELATIONS WITH BURNUP

  • KIM, JUNG SUK;JEON, YOUNG SHIN;PARK, SOON DAL;HA, YEONG-KEONG;SONG, KYUSEOK
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.924-933
    • /
    • 2015
  • The correlation of the isotopic composition of uranium, plutonium, neodymium, and cesium with the burnup for high burnup pressurized water reactor fuels irradiated in nuclear power reactors has been experimentally investigated. The total burnup was determined by Nd-148 and the fractional $^{235}U$ burnup was determined by U and Pu mass spectrometric methods. The isotopic compositions of U, Pu, Nd, and Cs after their separation from the irradiated fuel samples were measured using thermal ionization mass spectrometry. The contents of these elements in the irradiated fuel were determined through an isotope dilution mass spectrometric method using $^{233}U$, $^{242}Pu$, $^{150}Nd$, and $^{133}Cs$ as spikes. The activity ratios of Cs isotopes in the fuel samples were determined using gamma-ray spectrometry. The content of each element and its isotopic compositions in the irradiated fuel were expressed by their correlation with the total and fractional burnup, burnup parameters, and the isotopic compositions of different elements. The results obtained from the experimental methods were compared with those calculated using the ORIGEN-S code.

CURRENT STATUS OF INTEGRITY ASSESSMENT BY SIPPING SYSTEM OF SPENT FUEL BUNDLES IRRADIATED IN CANDU REACTOR

  • Park, Jong-Youl;Shim, Moon-Soo;Lee, Jong-Hyeon
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.875-882
    • /
    • 2014
  • In terms of safety and the efficient management of spent fuel storage, detecting failed fuel is one of the most important tasks in a CANada Deuterium Uranium (CANDU) reactor operation. It has been successfully demonstrated that in a CANDU reactor, on-power failed fuel detection and location systems, along with alarm area gamma monitors, can detect and locate defective and suspect fuel bundles before discharging them from the reactor to the spent fuel storage bay. In the reception bay, however, only visual inspection has been used to identify suspect bundles. Gaseous fission product and delayed neutron monitoring systems cannot precisely distinguish failed fuel elements from each fuel bundle. This study reports the use of a sipping system in a CANDU reactor for the integrity assessment of spent fuel bundles. The integrity assessment of spent fuel bundles using this sipping system has shown promise as a nondestructive test for detecting a defective fuel bundle in a CANDU reactor.