• 제목/요약/키워드: Fuel element

검색결과 596건 처리시간 0.023초

정상운반조건 해석을 위한 사용후핵연료집합체 유한요소모델 최적화 (Optimization of Spent Nuclear Fuel Assembly Finite Element Model for Normal Transportation Condition Analysis)

  • 김민식;박민정;장윤석
    • 한국압력기기공학회 논문집
    • /
    • 제19권2호
    • /
    • pp.163-170
    • /
    • 2023
  • Since spent nuclear fuel assemblies (SFA) are transported to interim storage or final disposal facility after cooling the decay heat, finite element analysis (FEA) with simplification is widely used to show their integrity against cladding failure to cause dispersal of radioactive material. However, there is a lack of research addressing the comprehensive impact of shape and element simplification on analysis results. In this study, for the optimization of a typical pressurized water reactor SFA, different types of finite element models were generated by changing number of fuel rods, fuel rod element type and assembly length. A series of FEA in use of these different models were conducted under a shock load data obtained from surrogate fuel assembly transportation test. Effects of number of fuel rods, element type and length of assembly were also analyzed, which shows that the element type of fuel rod mainly affected on cladding strain. Finally, an optimal finite element model was determined for other practical application in the future.

Analysis of CANDU-6 Transition Core Refuelled from 37-Element Fuel to CANFLEX-NU Fuel

  • Jeong, Chang-Joon;Lee, Young-Ouk;Suk, Ho-Chun
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 춘계학술발표회논문집(1)
    • /
    • pp.77-82
    • /
    • 1997
  • The CANDU-6 transition core refuelled from 37-element fuel to CANFLEX-NU fuel has been evaluated by an 100full power day time-dependent fuel-management simulation to find the core compatibility with the CANFLEX fuel loading. The simulation calculations for the transition core were carried out with the RFSP code, provided by the cell averaged fuel properties obtained from the POWDERPUFS-V code. The simulation results were compared with those of the current 37-element fuel loading only. The results show that the CANFLEX-NU fuel bundles will be compatible with the CANDU-6 reactor because the core physics characteristics of CANFLEX-NU fuel are very similar to those of the 37-element fuel bundle.

  • PDF

MODAL TESTING AND MODEL UPDATING OF A REAL SCALE NUCLEAR FUEL ROD

  • Park, Nam-Gyu;Rhee, Hui-Nam;Moon, Hoy-Ik;Jang, Young-Ki;Jeon, Sang-Youn;Kim, Jae-Ik
    • Nuclear Engineering and Technology
    • /
    • 제41권6호
    • /
    • pp.821-830
    • /
    • 2009
  • In this paper, modal testing and finite element modeling results to identify the modal parameters of a nuclear fuel rod as well as its cladding tube are discussed. A vertically standing full-size cladding tube and a fuel rod with lead pellets were used in the modal testing. As excessive flow-induced vibration causes a failure in fuel rods, such as fretting wear, the vibration level of fuel rods should be low enough to prevent failure of these components. Because vibration amplitude can be estimated based on the modal parameters, the dynamic characteristics must be determined during the design process. Therefore, finite element models are developed based on the test results. The effect of a lumped mass attached to a cladding tube model was identified during the finite element model optimization process. Unlike a cladding tube model, the density of a fuel rod with pellets cannot be determined in a straightforward manner because pellets do not move in the same phase with the cladding tube motion. The density of a fuel rod with lead pellets was determined by comparing natural frequency ratio between the cladding tube and the rod. Thus, an improved fuel rod finite element model was developed based on the updated cladding tube model and an estimated fuel rod density considering the lead pellets. It is shown that the entire pellet mass does not contribute to the fuel rod dynamics; rather, they are only partially responsible for the fuel rod dynamic behavior.

A STRESS ANALYSIS FOR A COATED FUEL PARTICLE OF A HTGR USING A FINITE ELEMENT METHOD

  • Kim, Young-Min;Cho, Moon-Sung
    • Nuclear Engineering and Technology
    • /
    • 제41권8호
    • /
    • pp.1087-1100
    • /
    • 2009
  • A finite element method utilizing the Galerkin form of the weighted residuals procedure was developed to estimate the mechanical behavior for a coated fuel particle (CFP) of a high temperature gas-cooled reactor (HTGR). Through a weak formulation, finite element equations for multiple layers were set up to calculate the displacements and stresses in a CFP. The finite element method was applied to the stress analyses for three coating layers of a tri-isotropic coated fuel particle (TRISO) of a HTGR. The stresses calculated by the finite element method were in good agreement with those from a previously developed computer code and depicted the typical stress behavior of the coating layers very well. The newly developed finite element method performs a stress analysis for multiple bonded layers in a CFP by changing the material properties at any position in the layers during irradiation.

THERMAL-HYDRAULIC CHARACTERISTICS FOR CANFLEX FUEL CHANNEL USING BURNABLE POISON IN CANDU REACTOR

  • BAE, JUN HO;JEONG, JONG YEOB
    • Nuclear Engineering and Technology
    • /
    • 제47권5호
    • /
    • pp.559-566
    • /
    • 2015
  • The thermalehydraulic characteristics for the CANadian Deuterium Uranium Flexible (CANFLEX)-burnable poison (BP) fuel channel, which is loaded with a BP at the center ring based on the CANFLEX-RU (recycled uranium) fuel channel, are evaluated and compared with that of standard 37-element and CANFLEX-NU (natural uranium) fuel channels. The distributions of fuel temperature and critical channel power for the CANFLEX-BP fuel channel are calculated using the NUclear Heat Transport CIRcuit Thermohydraulics Analysis Code (NUCIRC) code for various creep rate and burnup. CANFLEX-BP fuel channel has been revealed to have a lower fuel temperature compared with that of a standard 37-element fuel channel, especially for high power channels. The critical channel power of CANFLEX-BP fuel channel has increased by about 10%, relative to that of a standard 37-element fuel channel for 380 channels in a core, and has higher value relative to that of the CANFLEX-NU fuel channel except the channels in the outer core. This study has shown that the use of a BP is feasible to enhance the thermal performance by the axial heat flux distribution, as well as the improvement of the reactor physical safety characteristics, and thus the reactor safety can be improved by the use of BP in a CANDU reactor.

Development of FEMAXI-ATF for analyzing PCMI behavior of SiC cladded fuel under power ramp conditions

  • Yoshihiro Kubo;Akifumi Yamaji
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.846-854
    • /
    • 2024
  • FEMAXI-ATF is being developed for fuel performance modeling of SiC cladded UO2 fuel with focuses on modeling pellet-cladding mechanical interactions (PCMI). The code considers probability distributions of mechanical strengths of monolithic SiC (mSiC) and SiC fiber reinforced SiC matrix composite (SiC/SiC), while it models pseudo-ductility of SiC/SiC and propagation of cladding failures across the wall thickness direction in deterministic manner without explicitly modeling cracks based on finite element method in one-dimensional geometry. Some hypothetical BWR power ramp conditions were used to test sensitivities of different model parameters on the analyzed PCMI behavior. The results showed that propagation of the cladding failure could be modeled by appropriately reducing modulus of elasticities of the failed wall element, so that the mechanical load of the failed element could be re-distributed to other intact elements. The probability threshold for determination of the wall element failure did not have large influence on the predicted power at failure when the threshold was varied between 25 % and 75 %. The current study is still limited with respect to mechanistic modeling of SiC failure as it only models the propagation of the cladding wall element failure across the homogeneous continuum wall without considering generations and propagations of cracks.

이중냉각 연료봉의 단면치수와 스팬길이에 따른 진동특성해석 (Vibration Characteristic Analysis of a Duel-cooled Fuel Rod according to the Cross-sectional Dimensions and the Span Length)

  • 이강희;김재용;이영호;윤경호;김형규
    • 한국소음진동공학회논문집
    • /
    • 제17권9호
    • /
    • pp.819-825
    • /
    • 2007
  • Vibration characteristics of an duel-cooling cylindrical fuel rod, which was proposed as a candidate design of fuel's cross section for the ultra-high burnup nuclear fuel, according to the cross-sectional dimensions and the number of supports or the span length were analytically studied. Finite element(FE) modeling for the annular cross sectional fuel was based on the methodology, that have been proven by the test verification, for the conventional PWR nuclear fuel rod. A commercial FEA code, ABAQUS, was used for the FE modeling and analysis. A planar beam element (B21) that uses a linear interpolation was used for the fuel rod and a linear spring element for the spring and dimple of the SG. Natural frequencies and mode shape were calculated according to the preliminary design candidates for the fuel's cross sectional dimension and the number of span. From the analysis results, the design scheme of the annular fuel compatible to the present PWR nuclear reactor core was discussed in terms of the number of supports and fuel's cross section.

CANFLEX 핵연료를 사용한 CANDU-6의 열수송계통 안정성 분석 (CANDU-6 Heat Transport System Stability Analysis With Canflex Fuel Bundle)

  • Shin, Jung-Cheol;Park, Ju-Hwan;Kim, Tae-Han;Suk, Ho-Chun
    • Nuclear Engineering and Technology
    • /
    • 제27권3호
    • /
    • pp.358-373
    • /
    • 1995
  • 중수로용 개량핵 연료집합체인 CANFLEX 핵연료다발의 CANDU-6 원자로 장전시 열수송계통에 대한 유동안정성이 분석되었다. CANFLEX 핵연료다발은 기존의 37개봉 핵연료다발과 원자로출력 및 압력강하 측면에서 거의 일치되며, 이로인해 수력적 거동이 양립하는 반면, CANFLEX핵연료다발은 기존의 37개봉 핵연료다발 보다 임계채널 출력이 증가하며, 반경방향 출력분포의 평탄화로 인해 균일한 엔탈피 분포를 확보할 수 있게 된다. CANFLEX 핵연료다발 및 출구모관들의 상호연결관에 대한 SOPHT 모델을 개발하였으며, 이 모델을 이용하여 CANFLEX 핵연료다발이 장전된 월성 1호기의 유동 안정성 거동이 해석되었다. 해석결과, 열수송계통의 출구모관들의 상호연결관이 없을 경우에는 기존의 37개봉 핵연료다발과 같이 유동이 불안정함을 보였으며, 출구모관들의 상호연결관이 있을 경우에는 정격출력의 $\pm$1% 내에서 안정함을 보였다. 따라서 CANFLEX 핵연료다발의 월성 1호기 장전시 열수송계통의 유동안정성 측면에서는 건전할 것으로 판단되었다.

  • PDF

3 차원 간극 열전도도 모델을 이용한 핵연료봉의 열적 비대칭 거동 해석 (Simulation of Asymmetric Fuel Thermal Behavior Using 3D Gap Conductance Model)

  • 강창학;이성욱;양동열;김효찬;양용식
    • 대한기계학회논문집A
    • /
    • 제39권3호
    • /
    • pp.249-257
    • /
    • 2015
  • 원자력 발전소의 반응로에는 핵분열 에너지를 생성하고 방사성 물질의 유출을 막는 핵연료 집합체가 있으며, 이러한 집합체는 핵연료와 피복관으로 구성되어 있는 핵 연료봉으로 구성되어 있다. 원자로에서 핵연료봉 거동의 안전성을 평가하기 위해 해석적인 방법을 적용하며 이러한 평가 코드를 핵 연료 성능 코드라 한다. 경수로 핵연료 해석에서는 간극의 두께에 따라 열전도도가 크게 영향을 받는 간극 열전도도가 주요 거동해석에 영향을 미친다. 본 연구에서는 간극 두께에 따라 열전도도가 변화하는 3 차원 간극 요소(Gap element)를 제안하였으며, 이를 적용하기 위해 3 차원 열탄성 모듈을 FORTRAN90을 이용하여 개발하였다. 제안된 3 차원 간극 요소를 이용하여 핵 연료봉에서 발생할 수 있는 비대칭적인 형상인 핵 연료 표면에 결함이 생긴 경우 MPS(Missing Pellet Surface)와 핵연료봉의 편심(Eccentricity of the nuclear fuel rod) 형상에 대하여 3 차원 해석을 진행하였다.

DUPIC 핵연료봉 봉단 용접부 건전성 확인을 위한 미세초점 X-선 투과시험에 관한 연구 (A Study on the Micro-Focus X-Ray Inspection for Confirming the Soundness of End Closure Weld of DUPIC Fuel Elements)

  • 김웅기;김수성;이정원;양명승
    • Journal of Welding and Joining
    • /
    • 제19권1호
    • /
    • pp.88-94
    • /
    • 2001
  • DUPIC (Direct use of spent PWR fuel in CANDU reactors) nuclear fuel is a CANDU fuel fabricated remotely from spent PWR fuel materials in a hot cell. The soundness of the end closure welds of nuclear fuel elements is an important factor for the safety and performance of nuclear fuel. To evaluate the soundness of the end closure welds of DUPIC fuel element, a precise X-ray inspection system is developed using a micro-focus X-ray generator with an image intensifier and a real time camera system. The fuel elements made of Zircaloy-4 and stainless steel by an Nd:YAG laser welding and a TIG welding aye inspected by the developed inspection system. The soundness of the welds of the fuel elements was confirmed by the X-ray inspection process, and the irradiation test of DUPIC fuel elements has been successfully completed at the HANARO research reactor.

  • PDF