• Title/Summary/Keyword: Fuel efficiency improvement

Search Result 283, Processing Time 0.02 seconds

A Study on the Performance Improvement of Diesel Automobile Engine with Ultrasonic Fuel Feeding System(II)-On the Spray Characteristics and Engine Performance- (초음파 연료분사장치용 디젤자동차의 성능향상에 관한 연구(II)-분무특성과 기관성능에 대하여-)

  • Yang, J.K.;Jung, J.D.;Ryu, J. I.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.6
    • /
    • pp.50-56
    • /
    • 1994
  • This is an experimental study on the performance characteristics of Diesel Automobile with ultrasonic fuel feeding system. For this purpose, ultrasonic fuel feeding system was made and atomization characteristics was measured. Base on this result, carried out engine dynamometer test to investigate the performance characteristics of diesel automobile with ultrasonic fuel feeding system in comparison with conventional diesel fuel injector. The results are as follows. 1) In the spray characteristics test, fuel particle sizes were decreased about 11%~21%. 2) In engine dynamometer test, -The power was increased about 5%~11%. -The thermal efficiency was improved about 6%~11%. -The specific fuel consumption was improved about 6%~19%. -The smoke concentration was decreased about 11%~50%.

  • PDF

Investigation of Combustion Characteristics of Hybrid Rocket with Tapered Grain Port (경사진 그레인 포트를 가진 하이브리드 로켓의 연소 특성)

  • Kim, Jae-Woo;Kim, Soo-Jong;Oh, Jung-Soo;Do, Gyu-Sung;So, Jung-Soo;Moon, Hee-Jang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.2
    • /
    • pp.8-14
    • /
    • 2011
  • In this paper, the combustion characteristics of hybrid rocket fuel with tapered grain port were investigated experimentally. The charging efficiency of convergent and divergent port shape fuel with $1^{\circ}$ taper angle was 6.8% higher than that of cylindrical port shape fuel. The regression rate was increased about 17.5% by using the convergent port shape fuel. On the other hand, in case of divergent port shape fuel, no notable difference of regression rate was observed when compared to that of the cylindrical port shape fuel. In the case of convergent port shape fuel, characteristic velocity and its efficiency were notably increased with respect to cylindrical port fuel. It was found that convergent port shape of hybrid rocket fuel can lead to a better option compared to the conventional cylindrical port in terms of combustion efficiency and performance improvement.

Effect of Porous Flow Field on PEMFC Performance with Dead Ended Anode System (Dead ended anode 시스템에서 다공성 유로가 연료전지 성능에 미치는 영향)

  • Kim, Junseob;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.646-652
    • /
    • 2022
  • The dead-end anode (DEA) system is a method that closes the anode outlet and supplies fuel by pressure. The DEA method could improve fuel usage and power efficiency through system simplification. However, flooding occurs due to water and nitrogen back diffusion from the cathode to the anode during the DEA operation. Flooding is a cause of decreased fuel cell performance and electrode degradation. Therefore, tthe structure and components of polymer electrolyte membrane fuel cell (PEMFC) should be optimized to prevent anode flooding during DEA operation. In this study, the effect of a porous flow field with metal foam on fuel cell performance and fuel efficiency improvement was investigated in the DEA system. As a result, fuel cell performance and purge interval were improved by effective water management with a porous flow field at the cathode, and it was confirmed that cathode flow field structure affects water back-diffusion. On the other hand, the effect of the porous flow field at the anode on fuel cell performance was insignificant. Purge interval was affected by metal foam properties and shown stable performance with large cell size metal foam in the DEA system.

Ratio Control of CVT by Considering the CVT System Efficiency (CVT 시스템 효율을 고려한 변속 제어)

  • Ryu, Wan-Sik;Kim, Hyun-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.157-163
    • /
    • 2006
  • A modified ratio control algorithm is proposed for the improvement of the fuel economy for a metal belt CVT. In the modified ratio control algorithm, the CVT ratio is controlled to operate the engine on the optimal operation region which provides the best efficiency from the view point of the overall efficiency of the engine-CVT system. In order to construct the modified ratio map, the CVT system loss model is used by assuming that the all the loss is attributed to the torque loss. It is found from the simulation results that the fuel economy by the modified ratio control algorithm is improved by 5.5 percents compared with the existing ratio control.

Efficiency Improvement of an Automotive Alternator by Heat Treatment

  • Kim, Ji-Hyun;Hong, Jung-Pyo
    • Journal of Magnetics
    • /
    • v.20 no.2
    • /
    • pp.155-160
    • /
    • 2015
  • Recently, $CO_2$ emission standards and fuel efficiency legislation has been tightened globally. Therefore automotive alternator performance becomes increasingly important to meet the requirements. Many proposed methods have suggested adding magnets or regulation control to increase alternator efficiency and output. However, this creates a significant additional cost. During the stator lamination process, the magnetic property of the stator deteriorates mainly due to stamping and slinky process for an alternator. To maximize the alternator performance, heat treatment of the stator core was performed and magnetic properties were compared to find the optimal condition. Finally, alternator output and efficiency test were performed resulting in significant output and efficiency improvement up to 6.8% and 0.6% respectively.

Performance Improvement of a Small-Sized Two Stroke Engine by Hydrogen Direct Injection (수소 직접 분사를 통한 2행정 소형 엔진의 성능 향상에 관한 연구)

  • CHOI, JISEON;KIM, YONGRAE;KIM, SEONYOEB;PARK, CHEOLWOONG;CHOI, YOUNG
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.3
    • /
    • pp.255-260
    • /
    • 2022
  • Hydrogen gas fuel was applied to a small-sized two stroke engine for a mobile power source instead of gasoline fuel. Port fuel supply showed a limitation in terms of power due to the back fire at the engine intake manifold. So in this study, hydrogen direct injection system was applied to overcome this drawback by using a low pressure direct gas injector. The result from this strategy showed that hydrogen direct injection improved fuel efficiency as well as torque and power comparing to the port fuel supply system.

A Study on Pilots' Behavior on Decision of Maneuvering Aircraft for Fuel Efficient Flight Operation

  • Yoo, Kwang Eui;Jeon, Seung Joon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.27 no.4
    • /
    • pp.96-104
    • /
    • 2019
  • The response to climate change of international air transport industry might be initiated by ICAO's CORSIA (Carbon Offsetting and Reduction Scheme for International Aviation) which will impact on international airlines' flight operation behavior in the future. Though the airlines' efforts to reduce fuel consumption has been a major issue in economics of aviation industry, the improvement of fuel efficiency in flight operation will have additional impact on their profitability by introducing carbon emission cost. The fuel consumption in flight operation will be somewhat influenced by pilots' technical action for maneuvering aircraft during flight operation. This study will investigate pilots' behavior on decision for tactical aircraft control for mission flight. The data will be collected by the survey through sample pilots asking about their intention and perception on fuel savings during flight operations. The data will be analyzed by AHP process and the study will find out the elements and factors influencing pilots' behavior on technical decision of flight and their weights on fuel saving effects.

Improvement of Diesel Engine Performance for Alternative Fuel Oil (대체연료를 사용할 경우의 디젤기관의 성능향상에 관한 연구)

  • 고장권
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.16 no.5
    • /
    • pp.97-110
    • /
    • 1992
  • Rape-seed oil has high viscosity and high rubber content like other vegetable oils. When crude rape-seed oil obtained by a general oil extraction process is used in a diesel engine, automization condition during injection is not good and a large amount of combustion product is doposited in a combustion chamber. The improvement of a diesel engine is required to use rape-seed oil as a diesel engine fuel. In this study, the physical and chemical properties and combustion characteristics of rape-seed oil were investigated. The auxiliary aid was developed to improve automization condition and the effect of the auxiliary injection aid on the performance of a diesel engine was determined. The results are as follows. 1) Oil content of rape-seed is 45%. The exraction rate is 33%. The resuls show higher values compared to those of other vegetable oils. 2) The viscosity of rape-seed oil is 50.8 cSt and nearly 14 times of diesel oil viscosity. 3) The heating value and flash point of rape-seed oil are 9720kcal/Kg and 318$^{\circ}C$, respectively. 4) In case rape-seed oil is used as fuel, brake horse power, specific fuel consumption and brake thermal efficiency are compared to those of diesel oil. The results of rape-seed oil show 3.6%, 12.7% and 3.1% higher values. 5) Particle size of injection fuel with the auxiliary injection aid on the performance of a diesel engine was determined. The results are as follows. 1) Oil content of rape-seed is 45%. The extraction rate is 33%. The results show higher values compared to those of other vegetable oils. 2) The viscosity of rape-seed oil is 50.8 cSt and nearly 14 times of diesel oil viscosity. 3) The heating value and flash point of rape-seed oil are 9720kcal/Kg and 318.deg.C, respectively. 4) In case rape-seed oil is used as fuel, brake horse power, specific fuel consumption and brake thermal efficiency are compared to theose of diesel oil. The results of rape-seed oil show 3.6%, 12.7% and 3.1% higher values. 5) Particle size of injection fuel with the auxiliary injection aids is 100.mu.m smaller than that od injection fuel without the aid. 6) Brake horse power and brake thermal efficiency with the auxiliary injection aid increase 5.07% and 6.07%, respectively. However, specific fuel consumption decreases 3.85% with the auxiliary injection aid.

  • PDF

A study on Emission Reduction by DOC on Heavy Duty Diesel Engine (대형디젤기관에서 DOC에 의한 배출가스 저감에 관한 연구)

  • 한영출;류정호;오용석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.16-21
    • /
    • 1999
  • The diesel vehicle is relatively superior to gasoline vehicle on the fuel consumption, durability and combustion efficiency. However, exhaust emission from diesel vehicle are known to be harmful to human health and environment. The treatment technologies for the diesel exhaust gases are classified as replacement of fuel, quality control of diesel fuel, improvement of engine and aftertreatment system. The most effective for the treatment technology is known to be aftertreatment system, and this research is continuously conducted by many groups. The DOC system has many advantages of reducing particulates and harmful gaseous substances such as CO. HC. Moreover, it is simple in device structure, relatively low cost, and easy to install witout retrofitting the vehicle. In this study, experiment were conducted to analyze the effects on factors of oxidation characteristics and conversion efficiency of DOC. In experiment, test was conducted to estimate engine emission in 11,000cc diesel engine which was equipped with DOC.

  • PDF

A Study on Performance Characteristics in Diesel Engine When Applied Ball Bearing Type Turbocharger (볼 베어링 터보차져를 적용시 디젤엔진 성능 특성에 관한 연구)

  • Eom, Myung-Do;Kim, Moon-Suck;Baik, Doo-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.74-78
    • /
    • 2010
  • Turbocharger in the application to a diesel engine was widely used in automobile industries for the improvement of engine performance. To comply with stringent emission standards, ball bearing turbocharger has been developed by applying new emission reduction technology. Up to date turbocharger has been proved as an essential part of diesel engines by demonstrating its improved engine performance, fuel efficiency and reduced emission as well. In this research, the performance of the ball bearing turbocharger was compared by the conventional journal bearing type turbocharger. The results shows that ball baring turbocharger was proved to be 10~13% higher fuel efficiency and 30% less average emission than journal bearing turbocharger.