• Title/Summary/Keyword: Fuel effective temperature

Search Result 267, Processing Time 0.021 seconds

Dispersion Characteristics of Carbon Black Particles in a High Viscous Simulated Solution (고점성 모사용액 내 Carbon Black 입자의 분산특성)

  • Jeong, Kyung-Chai;Eom, Sung-Ho;Kim, Yeon-Ku;Cho, Moon Sung
    • Applied Chemistry for Engineering
    • /
    • v.24 no.2
    • /
    • pp.165-170
    • /
    • 2013
  • An external gelation method in place of an internal gelation method applied to the fabrication process of an intermediated compound of Uranium Oxy-Carbide (UCO) kernel spheres for Very High Temperature Reactor (VHTR) fuel preparation is under development in Korea. For the preliminary experiments of the UCO kernel sphere preparation using an external gelation method, the carbon black dispersion experiments were carried out using a simulated broth solution. From the selection experiments of various kinds of carbon black through dispersion experiments in a viscous metal salt solution, Cabot G carbon black was selected owing to its dispersion stability, and the homogeneous dispersing state of carbon black particles in our system. For the effective dispersion of nano-size aggregated carbon black particles in a high viscous liquid, the carbon black particles in a metal salt solution were first de-aggregated with ultrasonic force. The mixed solution was then dispersed secondly by the use of the extremely high-speed agitation with a mechanical mixer of 6000 rpm after feeding the Poly Vinyl Alcohol (PVA) in the solution. This results in the broth solution with good stability and homogeneity alongside no further changes in physical properties.

Effect of Additional Early-Morning Heating Periods on the Growth and Yield of Cucumber and Heating Load (조조가온기간이 시설재배 오이의 생육과 수량 및 난방부하에 미치는 영향)

  • Kwon Joon Kook;Kang Nam Jun;Lee Jae Han;Kang Kyung Hee;Choi Young Hah
    • Journal of Bio-Environment Control
    • /
    • v.13 no.4
    • /
    • pp.245-250
    • /
    • 2004
  • To investigate the effect of early-morning heating periods on growth and yield of cucumber and heating load in a greenhouse cultivation, three additional heating periods (0, 1 and 2 hours) were compared to rise temperature from $12^{\circ}C\;to\;16^{\circ}C$ in the early-morning. Leaf temperature just before opening the thermal screen was $3.3^{\circ}C\;and\;4.1^{\circ}C$ higher in the 1 and 2 hour heating compared to that in the control (0 hour heating), respectively. Photosynthetic rate, conductance to $H_2O$ and transpiration rate of cucumber leaves were the highest in the 2 hour heating, and the lowest in the control. However. the difference between the 1 hour and 2 hour heating was not significant. Inorganic element content in cucumber leaves was not significant among the treatments of duration. Initial growth after planting of cucumber was greater in the 1 and 2 hour heating than that in the control. Yield increased by $11\%\;and\;15\%$ in the 1 hour and 2 hour heating compared to that in the control. respectively. Fuel consumption for heating increased by $12\%\;and\;22\%$ in the 1 hour and 2 hour heating compared to that in the control, respectively. Considering in the yield and fuel consumption for heating. 1 or 2 hours of early morning heating could be effective in temperature management for cucumber in a greenhouse cultivation.

A Study on the Treatment of Combustible Wastes and the Resource Recovery by Pyrolysis (熱分解에 의한 可燃性 廢棄物의 처리 및 資源回收에 관한 연구)

  • Kim, Sam-Cwan;Zong, Moon-Shik
    • Journal of Environmental Health Sciences
    • /
    • v.13 no.1
    • /
    • pp.17-33
    • /
    • 1987
  • As a result of technical advances and industrialization, the characteristics of domestic and industrial wastes are becoming more complex. Accordingly, improved treatment and disposal systems are being continuously sought to take account of complex characteristics and to comply with economic restrictions. In this study, an application of pyrolysis to the treatment of industrial wastes, including waste scrap rubber, waste raw material used in making the slipper bottom and waste PVC pipe, and the effectiveness of pyrolysis in resource recovery from these wastes were investigated. Batches of wastes were pyrolysed by external heating to a temperature of 400-800$\circ$C in a 32 mm diameter x 0.9 m long silica tube to produce combustible gases, oils and chars. Before the start of pyrolysis runs, the entire system was purged with nitrogen gas to exclude the air. The temperature inside the retort was controlled by the thermocouple in the gas stream, and referred to as the pyrolysis temperature. Under these conditions three products were separately collected and further analyzed. The results were summarized as follows. 1. More gases and less chars were produced with higher pyrolyzing temperature and with higher rates of heating, but the yields of oils tended downwards at temperatures above 700$\circ$C. Accordingly, operating conditions of pyrolysis should be varied with desired material. 2. Calorific values and sulfur contents of produced oils were sufficient and suitable for fuel use. Chars from waste rubber had high heating values with low sulfur contents, but calorific values of chars from waste PVC and waste slipper were as low as 3, 065-4, 273 kcal/kg and 942-2, 545 kcal/kg, respectively. Therefore, char from these wastes are inappropriate for fuel. 3. Soluble contents of Pb, Cd, Cu and Zn in chars from waste rubber and waste slipper were below the Specific Hazardous Waste Treatment Standards. However soluble contents of Pb and Cd in chars from waste PVC were one or two times and five or seven times exceedingly the Specific Hazardous Waste Treatment Standards, respectively. 4. Post high heating is desirable for treatment method of waste PVC which generates toxic hydrogen chloride. 5. The proportions of hydrogen, methane and ethane in produced gases were in the range of 3.99-35.61% V/V, 18.22-32.50% V/V and 5.17-5.87% V/V, respectively. 6. Pyrolysis is a useful disposal method in case of waste slipper, which was hardly combustible, and thus investigations of this kind of materials are required for effective management of industrial waste. 7. Based upon the possible market development for products, overall pyroly economics to take account of treatment values of noncombustible or hazardous materials should be evaluated.

  • PDF

Reaction of Natural Manganese Dioxide with Hydrogen Sulfide at High-Temperature (고온에서 천연산 망간광석과 황화수소의 반응특성)

  • Shon, Byung-Hyun;Oh, Kwang-Joong;Kim, Young-Sick
    • Clean Technology
    • /
    • v.2 no.1
    • /
    • pp.69-79
    • /
    • 1996
  • Sulfur emission control in coal gasification plants implies the removal of $H_2S$ from the fuel gas in the gas clean-up system. In this study, the effects of particle size of sorbents, temperature of sulfidation and sorbent characteristics on the $H_2S$ removal efficiency of manganese ore were investigated. Experimental results showed that the removal efficiency of $H_2S$ was optimum when the temperature was about $700^{\circ}C$. And that the smaller particle size, the higher the $H_2S$ removal efficiency, but that was not effective very much. As the temperature increases, the reactivity of sorbents has lowered because agglomeration of sorbents increased the intraparticle transport resistance. This phenomenon was confirmed by SEM photographs. The equilibrium ratio ($P_{H_2O}/P_{H_2S}$) obtained by experiments is represented as a ${\log}(P_{H_2O}/P_{H_2S})=5653/T-3.7909$. It was showed that the natural manganese ore could be used as a sorbent because its capacity for $H_2S$ removal is equivalent to the eariler developed sorbents.

  • PDF

Allowable Amount of Bed Inventory in a 300 MW Class Circulating Fluidized Bed Boiler (300 MW 급 유동층보일러에서 적정 층 물질량 산정)

  • Kim, Woo-Yong;Yoo, Ho-seon
    • Plant Journal
    • /
    • v.14 no.2
    • /
    • pp.33-38
    • /
    • 2018
  • The CFB boilers technology is facing a number of challenges. Among them, boiler tube erosion, sintering by bed inventory overheating and high self consumed service power are major ones. This study was conducted to obtain allowable bed inventory with the Yeosu Power Plant, a 300 MW class CFB boiler. For the test, bed pressure was reduced from design pressure of 4.5 KPa to 2.5 KPa by reducing bed inventory, at fixed turbine output, coal consumption rate and air flow. Consequently, reducing the lower bed inventory is effective to decrease bed temperature but excessive reducing might increase bed temperature due to lack of circulating fluidized materials. Also, in case of the Yeosu Plant boiler using subbituminous coal as its primary fuel, its bed temperature change is highly affected by not only the amount of bed inventory, but also the boiler capacity and coal contents.

  • PDF

Synthesization and Characterization of Pitch-based Activated Carbon Fiber for Indoor Radon Removal (실내 라돈가스 제거를 위한 Pitch계 활성탄소섬유 제조 및 특성연구)

  • Gwak, Dae-Cheol;Choi, Sang-Sun;Lee, Joon-Huyk;Lee, Soon-Hong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.3
    • /
    • pp.207-218
    • /
    • 2017
  • In this study, pitch-based activated carbon fibers (ACFs) were modified with pyrolysis fuel oil (PFO). Carbonized ACF samples were activated at $850^{\circ}C$, $880^{\circ}C$ and $900^{\circ}C$. A scanning electron microscope (SEM) and a BET surface area apparatus were employed to evaluate the indoor radon removal of each sample. Among three samples, the BET surface area and micropore area of ACF880 recorded the highest value with $1,420m^2{\cdot}g^{-1}$ and $1,270m^2{\cdot}g^{-1}$. Moreover, ACF880 had the lowest external surface area and BJH adsorption cumulative surface area of pores with $151m^2{\cdot}g^{-1}$ and $35.5m^2{\cdot}g^{-1}$. This indicates that satisfactory surface area depends on the appropriate temperature. With the above scope, ACF880 also achieved the highest radon absorption rate and speed in comparison to other samples. Therefore, we suggest that the optimum activation temperature for PFO containing ACFs is $880^{\circ}C$ for effective indoor radon adsorption.

Conversion Characteristics on Beef-Tallow and Sunflower Oil Blend Biodiesel and its Treatment Method to Reduce Kinematic Viscosity (우지-해바라기유 오일혼합 바이오디젤의 전환 특성과 동점도 처리에 따른 오일혼합 바이오디젤의 동점도 변화 특성)

  • Woo, Duk-Gam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.380-389
    • /
    • 2020
  • The conversion characteristics and fuel properties for producing biodiesel (BD) by blending beef-tallow, an animal waste resource with a high-saturated fatty acid content, and sunflower-oil, a vegetable oil with a high-unsaturated fatty acid content, were investigated. For this investigation, the effects of the control factors, such as the oil-blend ratio and methanol-to-oil molar ratio, on the fatty acid methyl ester and BD production yield were also investigated. The kinematic viscosity reduction effects of BD using heating and ultrasonic irradiation were verified, and the optimal temperature of each BD-diesel fuel blend for reducing the kinematic viscosity was derived using the correlation equation. As a result, the optimal conditions for producing blended biodiesel were verified to be TASU7 and a methanol-to-oil molar ratio of 10:1. The analysis results of the fuel properties of TASU7 satisfied the BD quality standard; hence, the viability of BD blended with waste tallow as fuel was verified. The experimental results on the kinematic viscosity reduction showed that heating is more effective in reducing the kinematic viscosity because it took less time than ultrasonic irradiation, and the equipment was cheaper and more straightforward than the ultrasonic irradiation method.

Research Trends on Developments of High-performance Perfluorinated Sulfonic Acid-based Polymer Electrolyte Membranes for Polymer Electrolyte Membrane Fuel Cell Applications (고분자 전해질 막 연료전지 응용을 위한 고성능 과불소화계 전해질 막 개발 연구 동향)

  • Choi, Chanhee;Hwang, Seansoo;Kim, Kihyun
    • Membrane Journal
    • /
    • v.32 no.5
    • /
    • pp.292-303
    • /
    • 2022
  • An eco-friendly energy conversion device without the emission of pollutants has gained much attention due to the rapid use of fossil fuels inducing carbon dioxide emissions ever since the first industrial revolution in the 18th century. Polymer electrolyte membrane fuel cells (PEMFCs) that can produce water during the reaction without the emission of carbon dioxide are promising devices for automotive and residential applications. As a key component of PEMFCs, polymer electrolyte membranes (PEMs) need to have high proton conductivity and physicochemical stability during the operation. Currently, perfluorinated sulfonic acid-based PEMs (PFSA-PEMs) have been commercialized and utilized in PEMFC systems. Although the PFSA-PEMs are found to meet these criteria, there is an ongoing need to improve these further, to be useful in practical PEMFC operation. In addition, the well-known drawbacks of PFSA-PEMs including low glass transition temperature and high gas crossover need to be improved. Therefore, this review focused on recent trends in the development of high-performance PFSA-PEMs in three different ways. First, control of the side chain of PFSA copolymers can effectively improve the proton conductivity and thermal stability by increasing the ion exchange capacity and polymer crystallinity. Second, the development of composite-type PFSA-PEMs is an effective way to improve proton conductivity and physical stability by incorporating organic/inorganic additives. Finally, the incorporation of porous substrates is also a promising way to develop a thin pore-filling membrane showing low membrane resistance and outstanding durability.

The Study of Optimized Combustion Tuning for Fossil Power Plant (발전보일러의 최적연소조정에 대한 실험적 연구)

  • Jung, Jae-Jin;Song, Jung-Il
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.102-108
    • /
    • 2009
  • Fossil power plants firing lower grade coals or equipped with modified system for NOx controls are challenged with maintaining good combustion conditions while maximizing generation and minimizing emissions. In many cases significant derate, availability losses and increase in unburned carbon levels can be attributed to poor combustion conditions as a result of poorly controlled local fuel and air distribution within the boiler furnace. In order to develop a on-line combustion tuning system, field test was conducted at operating power boiler. During the field test the exhaust gases' $O_2$, NOx and CO was monitored by using a spatially distributed monitoring grid located in the boiler's high temperature vestibule and upper convective back-pass region. At these locations, the flue gas flow is still significantly stratified, and air in-leakage is minimal which enables tracing of poor combustion zones to specific burners and over-fire air ports. using these monitored information we can improving combustion at every point within the furnace, therefore the boiler can operate at reduced excess $O_2$ and gas temperature deviation, reduced furnace exit gas temperature levels while also reducing localized hot spots, corrosive gas conditions, slag or clinker formation and UBC. Benefits include improving efficiency, reducing NOx emissions, increasing output and maximizing availability. Discussion concerning the reduction of greenhouse gases is prevalent in the world. When taking a practical approach to addressing this problem, the best way and short-term solution to reduce greenhouse gases on coal-fired power plants is to improve efficiency. From this point of view the real time optimized combustion tuning approach is the most effective and implemented with minimal cost.

  • PDF

The Study of Optimized Combustion Tuning Method for Fossil Power Plant (발전용 보일러의 최적연소조정기법에 대한 실험적 연구)

  • Jung, Jae-Jin;Song, Jung-Il
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.5
    • /
    • pp.45-52
    • /
    • 2009
  • Fossil power plants firing lower grade coals or equipped with modified system for $NO_x$ controls are challenged with maintaining good combustion conditions while maximizing generation and minimizing emissions. In many cases significant derate, availability losses and increase in unburned carbon levels can be attributed to poor combustion conditions as a result of poorly controlled local fuel and air distribution within the boiler furnace. In order to develop a on-line combustion tuning system, field test was conducted at operating power boiler. During the field test the exhaust gases' $O_2,\;NO_x$ and CO was monitored by using a spatially distributed monitoring grid located in the boiler's high temperature vestibule and upper convective rear pass region. At these locations, the flue gas flow is still significantly stratified, and air in-leakage is minimal which enables tracing of poor combustion zones to specific burners and over-fire air ports. using these monitored information we can improving combustion at every point within the furnace, therefore the boiler can operate at reduced excess $O_2$ and gas temperature deviation, reduced furnace exit gas temperature levels while also reducing localized hot spots, corrosive gas conditions, slag or clinker formation and UBC. Benefits include improving efficiency, reducing $NO_x$ emissions, increasing output and maximizing availability. Discussion concerning the reduction of greenhouse gases is prevalent in the world. When taking a practical approach to addressing this problem, the best way and short-term solution to reduce greenhouse gases on coal-fired power plants is to improve efficiency. From this point of view the real time optimized combustion tuning approach is the most effective and implemented with minimal cost.