• Title/Summary/Keyword: Fuel economy test

Search Result 163, Processing Time 0.025 seconds

A Prediction Study for Fuel Economy Development in an Express Bus (고속버스 연비개선 예측에 관한 연구)

  • Lyu, Myung-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.181-185
    • /
    • 2006
  • A study to get better vehicle fuel economy is described based on an express bus. The approach is based on using a commercial software vehicle simulation to identify the relative efficiency of each of the vehicle systems, such as the engine hardware, engine software calibration, transmission, cooling system and ancillary drives. The simulation-based approach offers a detailed understanding of which vehicle systems are underperforming and by how much the vehicle fuel economy can be improved if those systems are brought up to best-in-class performance. In this way, the optimum vehicle fuel economy can be provided to the vehicle customer. A further benefit is that the simulation requires only a minimum of vehicle testing for initial validation, with all subsequent field test cycles performed in software, thereby reducing development time and cost for the manufacturer.

Characteristics of Emission and Fuel Economy of Fuel Additives in the Domestic Market (국내 유통 첨가제의 배출가스 및 연비특성)

  • Kim, Sungwoo;Lee, Minho;Lee, Jeongmin;Kim, JaiGueon;Jung, Choongsub
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.165.1-165.1
    • /
    • 2010
  • In the past, drivers bought a fuel additives to treat a combustion chambers or injector nozzles for carbon or gum deposit at market. But, nowadays, as raised cost of fuel for a vehicle the consumers also start focusing on a function of fuel additives that increases fuel economy of one. Some fuel additive manufacturers and agents advertise that their goods make a car it's initial state. This paper shows data for 3 years that were acquired during test for registration of an additive in domestic. The data were sorted according to kind of vehicle, kind of fuel, test mode, CO, HC, NOx, PM, total emission, fuel economy and accumulated mileage. And than by using simple linear regression analysis changes according to accumulated mileage was displayed. Normal distribution and histogram of rate of increase and decrease were displayed. the analyzed data indicated that a fuel additive maintain and make a car the first state of one but can't make a car be batter than initial the one.

  • PDF

The Study on the improvement of vehicle fuel economy test method according to the characteristics of test fuel (시험용 연료 특성에 따른 자동차 연비측정 방법 개선에 관한 연구)

  • Lee, Minho;Kim, Jeonghwan
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.9-18
    • /
    • 2014
  • These test methods, the current domestic vehicles fuel economy calculation method is tested on a dynamometer for vehicles after you have installed the vehicle, given the test mode(FTP-75 & HWFET mode, etc.) are measured by vehicle emissions and fuel economy by seeking to have the results approach, the carbon balance method. At this point, using the carbon balance method is a test method was developed seeking fuel for a standard fuel properties, where the value of the constant and saved test was measured in THC, CO, $CO_2$ has a value calculation. Therefore, use fuel which is changed every time you test the fuel properties characteristics are not considered exactly. In this study, using the carbon balance method and fluid flow rate of the fuel used in the actual test is measured by comparing the results with the flow measurement methods, properties of the fuel used for the test attribute to study ways that can be considered, taking into account the physical attributes of a more diverse fuel line and fuel economy improved measurement methods that can be reviewed.

A Study on Fuel Economy Determination of Natural Gas Vehicle Using Carbon Balance Method (탄소평형법을 적용한 천연가스 자동차의 연비 산출 방법 고찰)

  • Han, JeongOk;Chae, JungMin;Lee, DongWon
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.6
    • /
    • pp.1-7
    • /
    • 2017
  • This study is aimed to investigate the US code and European code on the evaluation of fuel economy of natural gas vehicles and deduce the formula suitable for domestic natural gas fuel. The fuel consumption formula have been derived by carbon balance relation between fuel composition and exhaust emission. The US code does not limit the composition of the test gas, but European code should be used the reference gases such as G20 and G23. In the case of NGV using domestic city gas, it is confirmed that the fuel economy determined by European code is 12% worse than that of US code because of difference of test gas. Also, a method of determining the fuel properties from the calorific value is proposed to evaluate the fuel economy of natural gas vehicles.

A Comparison of the Fuel Economy Test Method on Electric Vehicles (EVs) (전기자동차 연비시험 방법 비교)

  • LEE, MIN-HO;KIM, SUNG-WOO;KIM, KI-HO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.3
    • /
    • pp.287-294
    • /
    • 2017
  • EVs manufacturers typically target a range of 300 km on a fully charged battery. Many studies have been conducted to improve these disadvantages. As a results, the mileage of EVs is expected to increase significantly. However, as the distance traveled by EVs increases, current test method (SCT) have many difficulties. The biggest problem is that it takes a lot of time to test an EVs and greatly increases the error rate during the test period. In order to solve these problems, this paper discusses the fuel economy test method of EVs for energy efficiency and mileage. The comparison of test methods was achieved by chassis dynamometer test about EVs. These review of test methods are intended to both improve testing efficiency and provide a practical testing methodology that can be easily adapted to accommodate future testing enhancements. In conclusion, the results of MCT mode and SCT mode comparison show similar results within 3 %, confirming that the test method is appropriate. Also, as the CSCM distance becomes shorter in the MCT mode, the mileage becomes longer and the fuel economy becomes lower. As a result, the error from the SCT test results is expected to increase. In order to minimize the error of SCT measurement fuel economy, it is recommended to maximize the CSCM driving distance. However, since the timing of the EOT is not clearly known, it is reasonable to define the allowable range of the CSCE to be within 20 % of the MCT total mileage.

OPTIMIZATION ON VEHICLE FUEL CONSUMPTION IN A HIGWAY BUS USING VEHICLE SIMULATION

  • Lyu, M.S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.841-846
    • /
    • 2006
  • This paper presents a numerical approach to optimizing vehicle fuel economy in a higway bus. The method described is based on using a commercial software vehicle simulation to identify the relative efficiency of each of the vehicle systems, such as the engine hardware, engine software calibration, transmission, cooling system and ancillary drives. The simulation-based approach offers a detailed understanding of which vehicle systems are underperforming and by how much the vehicle fuel economy can be improved if those systems are brought up to best-in-class performance. In this way, the optimum vehicle fuel economy can be provided to the vehicle customer. A further benefit is that the simulation requires only a minimum number of vehicle testing for initial validation, with all subsequent field test cycles performed in software, thereby reducing development time and cost for the manufacturer.

The Effect of Cooling Fan Control on Fuel Economy of City Bus (냉각팬 전자제어를 통한 시내버스의 연비 개선)

  • Kim, Kibok;Park, Jinil;Lee, Jonghwa;Park, Kyoungseok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.1-7
    • /
    • 2013
  • This paper focuses on cooling fan control by using a magnetic clutch type for the improvement of fuel economy on a heavy city bus. In general, Heavy duty vehicles use viscous clutch type cooling fan which has some disadvantages, such as slow response, wide temperature variation of engine coolant water. But a magnetic clutch type cooling fan can be controlled electronically so the engine coolant temperature can be precisely controllable and this effects could be used to reduce fuel consumption. A control system for applying the magnetic clutch type cooling fan was developed in this study and applied to the real field test and chassis dynamometer test. The result showed well controlled coolant temperature and enhancement of fuel economy.

Experimental Study on Natural Gas Conversion Vehicle(1) - Fuel Economy, Emission and Roadability (천연가스 개조 승용차에 대한 실험적 연구(1) - 연비, 배기 및 주행 성능)

  • Kim, Hyung-Gu;Kim, Inok;Ohm, Inyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.4
    • /
    • pp.410-419
    • /
    • 2015
  • In this study, the roadability, fuel economy and emission characteristics were evaluated for a natural gas converted vehicle. The results are as follows; Not only the shortage of power was observed in stall test, but also large deterioration of acceleration performance was exposed in roadability. Compared to the original LPG system, the acceleration is 76% in start acceleration and 45 ~ 65% in overtaking acceleration, especially the decline became larger when air conditioner is at work. Furthermore, because the mapping data, which controls the injection depending on driving condition, do not match up with injection system, the failure of air-fuel ratio feedback control occurs resulting from the large gap between the required and the really supplied amount of fuel. This failure cause the exhaust gas to emit without catalytic conversion and the fuel economy based on the fuel heat value to get worse 22% in the mode test and 16% in road test respectively. In addition, the existing injection system does not secure enough fuel at the starting so that it may lead to the fail of clod start, the deterioration of hot start and inharmonic of engine at the idle after start.

Emission Factor and Fuel Economy Calculation Using Vehicle Inspection and Maintenance Program (자동차 환경검사에 의한 대기오염물질 배출계수 및 연비 산출)

  • Lee, Tae-Woo;Keel, Ji-Hoon;Park, Jun-Hong;Eom, Myoung-Do;Kim, Jong-Choon;Lee, Dae-Yup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.97-106
    • /
    • 2009
  • An objective of this study is to give practical information that could be used for calculating pollutant emission factors and fuel economy from Korean Inspection & Maintenance program, which has been using steady state acceleration simulation mode. Concentration results from I/M test is adequately converted to mass emission factors and fuel efficiency data, which have unit of g/km and km/L, respectively. Exhaust volume flow(EVF), which is for converting emission result from concentration to mass, is measured by tracer method in various vehicle speed - power condition. It is found that there is an apparent second order relationship between EVF and vehicle inertia weight. EVF is expressed in function of vehicle inertia weight in order to estimate EVF in I/M site without measuring device. Converted mass emission results from measured EVF and raw emission analyzer show a satisfactory agreement with those from conventional CVS-bag type measurement system. Mass emission factors and fuel efficiency from measured EVF and estimated EVF also show good agreement to each other. Considering that an I/M program has great advantages to recruit-based emission test in terms of the number of test vehicle, the information in this study can be used for developing an alternative procedure to collect more various data to establish national database of mobile emission factors and fuel economy, even though the driving cycle in I/M program is steady state cycle rather than transient cycle.

A Study on the Driving Patterns for Passenger Car in the Metropolitan Area (승용차의 도심 주행패턴에 관한 연구)

  • 정남훈;이우택;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.18-24
    • /
    • 2003
  • Vehicle emission is one of the major sources of air pollution, and provides some undesirable effects on the atmospheric environment and human health. In this study, the driving data were recorded during road tests in Seoul metropolitan wet and analyzed by statistical techniques. The objective of the study is to analyze the driving Patterns of passenger car that influence on emissions in urban driving. The results show that the average speed is around 29.2 km/h, and the average fuel economy is 10.23 km/$\ell$. The vehicle speed of Seoul metropolitan area is slower, and the stop-and-go operation is more frequent than CVS-75 test mode which is used far emission and fuel economy test.