• 제목/요약/키워드: Fuel economy test

검색결과 163건 처리시간 0.026초

EXPERIMENTAL ANALYSIS OF DRIVING PATTERNS AND FUEL ECONOMY FOR PASSENGER CARS IN SEOUL

  • Sa, J.-S.;Chung, N.-H.;Sunwoo, M.-H.
    • International Journal of Automotive Technology
    • /
    • 제4권2호
    • /
    • pp.101-108
    • /
    • 2003
  • There are a lot of factors that influence automotive fuel economy such as average trip time per kilometer, average trip speed, the number of times of vehicle stationary, and so forth. These factors depend on road conditions and traffic environment. In this study, various driving data were measured and recorded during road tests in Seoul. The accumulated road test mileage is around 1,300 kilometers. The objective of the study is to identify the driving patterns of the Seoul metropolitan area and to analyze the fuel economy based on these driving patterns. The driving data which was acquired through road tests was analysed statistically in order to obtain the driving characteristics via modal analysis, speed analysis, and speed-acceleration analysis. Moreover, the driving data was analyzed by multivariate statistical techniques including correlation analysis, principal component analysis, and multiple linear regression analysis in order to obtain the relationships between influencing factors on fuel economy. The analyzed results show that the average speed is around 29.2 km/h, and the average fuel economy is 10.23 km/L. The vehicle speed of the Seoul metropolitan area is slower, and the stop-and-go operation is more frequent than FTP-75 test mode which is used for emission and fuel economy tests. The average trip time per kilometer is one of the most important factors in fuel consumption, and the increase of the average speed is desirable for reducing emissions and fuel consumption.

이륜자동차의 주행저항 결정 기법이 WMTC 연비 측정에 미치는 영향 (Effect of Road Load Determination Methods on the Fuel Economy Measurement using WMTC in Two-wheel Vehicles)

  • 이광구;용부중;용기중
    • 자동차안전학회지
    • /
    • 제10권1호
    • /
    • pp.45-51
    • /
    • 2018
  • There are some ambiguities of the information on the fuel economy provided to the consumers because the standard and the detailed regulations for the fuel economy of the two-wheeled vehicle have not been established in Korea. Since Korea has been a signatory of World Forum for Harmonization of Vehicle Regulations since 1998, it is possible to remove the ambiguities by adopting the WMTC (Worldwide-harmonized Motorcycle Test Cycle) measurement method for the fuel economy of the two-wheel vehicle. As a preliminary study on the WMTC mode fuel economy, road loads measured by coast down method and table method were compared for the two types of two-wheeled motorcycles on sales in domestic market. In the same model, it was confirmed that the deviation of WMTC mode fuel efficiency was below -5% between products. On the other hand, the difference of WMTC fuel economy exceeded 5% between the coast down method and table method.

공기저항 저감장치 패키지를 이용한 대형화물차량의 연비개선 및 온실가스 저감효과에 관한 실험적 연구 (An Experimental Study on GHG Emissions Reduction and Fuel Economy Improvement of Heavy-Duty Trucks by Using Aerodynamics Device Package)

  • 박승원;랑동;허철행;윤병규;김대욱
    • 한국자동차공학회논문집
    • /
    • 제25권2호
    • /
    • pp.207-218
    • /
    • 2017
  • Improving fuel consumption, particularly that of commercial vehicles, has become a global concern. The reduction in logistics cost has been a key issue in efforts to improve fuel economy and efficiency of transportation equipment. Typical technologies for reducing reduce fuel usage include air resistance reduction technologies, tire rolling resistance technologies, and idle technologies among others. Air resistance technology is a highly effective method that can be easily applied in a short period. As with air resistance technology, several devices involving side skirt, boat tail and gap fairing have been developed based on an analytical 3-D modeling technique for reducing air resistance attributed to the vehicle configuration. The devices were on a 45 feet tractor-trailer and the emission test was done using PEMS equipment. Fuel economy was evaluated by introducing several devices to reduce outer air resistance. The test was conducted by changing the experimental method of SAE J1321 Joint TMC/SAE Fuel Consumption Test Procedure - Type II test. As a result, air resistance decreased by at least 15 % and fuel economy improved by at least 13 %. This study sought to reduce greenhouse gas and improve fuel economy by applying several devices to a test vehicle to lower air resistance.

신형식 자동차 적용에 따른 연비 보정식 검토에 관한 연구 (Study on new type vehicle fuel economy correction formula review according to the applicable)

  • 임재혁;김성우;이민호;김기호
    • 에너지공학
    • /
    • 제25권4호
    • /
    • pp.198-206
    • /
    • 2016
  • 자동차 표시연비는 국가적으로 에너지관리 지표로서 활용되며, 자동차 제작사의 기술개발을 유도하고, 소비자 차량구매 시 정보제공의 역할을 담당하고 있다. 하지만 정부의 표시연비가 체감연비와 상이하다는 소비자 불만이 지속되어 정부는 보다 정확한 표시연비 측정을 위해 미국의 5-cycle 시험방법을 국내 차량 기준에 맞게 재설정하여 도입하였다. 본래는 다양한 환경조건 및 주행패턴이 반영된 5개의 시험모드를 모두 주행함으로써 측정된 결과 값을 표시연비로 계산하는 방법이지만 소요되는 자원의 급격한 증가에 따른 충격을 완화하기 위하여 2개의 시험모드(도심(FTP-75 mode), 고속도로(HWFET mode))의 결과 값을 5-cycle 시험법으로 계산된 연비 값과 동등한 수준으로 산출하는 5-cycle 보정식을 사용하고 있다. 이 보정식은 2011년에 30대 차량의 5-cycle 시험방법으로 산출되었으나 최근 자동차 기술의 급속한 발전으로 인한 신형식 자동차에 대한 기존 5-cycle 보정식에 대한 검토가 필요할 것으로 판단되었다. 본 연구에서는 최근 기술이 적용된 14대의 신형식 자동차를 대상으로 기존과 동일한 시험 방법을 통해 시험모드별 연비 특성을 확인하고, 기존에 개발된 보정식과 차이를 분석한 결과 기존 시험 차량 결과와 큰 차이를 보이지 않았으며 보정식 또한 최대 1.5% 이내의 오차로써 기존 연비 보정식은 현재의 자동차 기술발전에 따른 개선도에 크게 영향을 받고 있지 않음을 알 수 있었다.

사이드스커트와 보트테일을 이용한 대형화물차량의 연비개선 효과 및 온실가스 감축량 추정 (Estimation of GHG Emissions Reduction and Fuel Economy Improvement of Heavy-Duty Trucks by Using Side Skirt and Boat Tail)

  • 허철행;윤병규;김대욱
    • 한국기후변화학회지
    • /
    • 제7권2호
    • /
    • pp.177-184
    • /
    • 2016
  • Recently, the need for technology development of commercial vehicle fuel consumption has emerged. Fuel economy improvement of transport equipment and transportation efficiency, and increasing attention to the logistics cost reduction measures. Increasing attention to the logistics cost reduction measures by fuel economy improvement of transport equipment and transportation efficiency. In this study, we have installed aerodynamic reduction device (side skirt, boat tail) to 14.5 ton cargo trucks and 45 ft tractor-trailers. And the fuel consumption was compared installed before and after. Fuel economy assessment for the aerodynamic reduction value device was tested by modifying the SAE J1321 Joint TMC/SAE Fuel Consumption Test Procedure - Type II test in according domestic situation. Greenhouse gas reductions were calculated in accordance with the scenario, including fuel consumption test results. When the 14.5 ton cargo trucks has been equipped with side skirts and boat tail, it confirmed the improvement in fuel efficiency of 4.72%. One Heavy-duty truck's the annual greenhouse gas reductions value are $6.86ton\;CO_2\;eq$. And if applying the technology to more than 50% of registered 15 ton trucks, greenhouse gas reductions are calculated as $686,826ton\;CO_2\;eq./yr$.

엔진오일의 저점도화가 차량 연비에 미치는 영향에 관한 실험적 연구 (Experimental Study on the Effects of Low Viscosity Engine Oils on Fuel Economy)

  • 김한구
    • Tribology and Lubricants
    • /
    • 제26권5호
    • /
    • pp.291-296
    • /
    • 2010
  • The purpose of this paper is to study the fuel economy improvement experimentally when the viscosity of engine oil is lowered. The emissions are measured for CVS-75 mode with SAE viscosity grades. The test results indicate that a close correlation has been found between the engine oil viscosity and the fuel economy. The lowering of engine oil viscosity causes the reduction of friction loss which has a very close relation with the fuel economy. These results as the lowering of engine oil viscosity will be a important factor for improvement of the fuel economy and reduction of the $CO_2$ emission.

상용차 탑재 대형엔진의 차량연비 개선 연구(I) (A Study of the Fuel Economy Improvement of a Heavy Duty in Commercial Vehicle(I))

  • 류명석;두병만;구영곤
    • 한국자동차공학회논문집
    • /
    • 제16권5호
    • /
    • pp.44-48
    • /
    • 2008
  • This paper describes on studies of the heavy duty engine calibration for better fuel economy based on real driving conditions. Using testbed validated software simulation of the engine and turbocharger system, an alternative turbocharger specification, with potential to improve fuel economy was identified. Secondly, the engine calibration was modified to optimize vehicle fuel economy over a typical customer drive cycle whilst still meeting the steady-state (testbed) emissions legislation. These results were confirmed by field testing of a vehicle equipped with the updated specifications. This study found good agreements between the prediction and the field test on the vehicle fuel economy improvements of the express bus with updated calibration and turbocharger.

자동차 엔진오일과 연비 (Automotive Engine Oil and Vehicle Fuel Economy)

  • 이영재;김강출;표영덕
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제32회 추계학술대회 정기총회
    • /
    • pp.155-161
    • /
    • 2000
  • To improve the vehicle fuel economy, various technologies such as improvement of power train efficiency, use of light weight material, improvement of aerodynamic design, have been studied. One of the possible way to improve the vehicle fuel economy is to reduce the engine friction loss by improving the engine oil characteristics. In the present paper, it was examined the effect of the engine oil viscosity and the addition of friction modifier to engine oil on vehicle fuel economy improvements. Moreover, the effect of engine oil degradation on vehicle fuel economy was examined with two gasoline vehicles and one diesel vehicle by using the fuel economy test facility.

  • PDF

벤치 연비 모사 조건에서 차량용 에어컨 압축기의 특성에 관한 연구 (Study on Characteristics of Car Air-con Compressor Under Bench System Fuel Economy Simulation Condition)

  • 유성연;김영신
    • 대한기계학회논문집B
    • /
    • 제36권7호
    • /
    • pp.705-710
    • /
    • 2012
  • 본 연구에서는, 차량용 에어컨 시스템으로 구성된 벤치 장비에서의 실험을 통하여 에어컨 관련 북미 실차 연비 평가 모드 중의 하나인 SC03 모드 연비 평가의 벤치 모사 시험 가능성을 검증하였다.본 연구에 사용된 설비는 차량용 에어컨 시스템을 실차 조건처럼 구성할 수 있는 각각의 챔버로 구분되어져 있으며, 외부 환경을 재연할 수 있도록 온도와 습도, 풍속을 제어할 수 있도록 구성하였다. 지금까지 실차 환경 풍동에서 평가 되어지던 SC03 모드 연비 평가에 대하여 시스템 벤치에서 모사가 가능하도록 실차에서 가장 중요한 변수인 차속과 차량 전면 풍속에 대응하는 압축기 회전수와 응축기 전면풍속에 대한 신뢰성을 확보하였다.이를 바탕으로 다양한 토출 용량을 가지는 압축기를 가지고 에어컨 시스템 벤치 장비에서 SC03 연비 모사 실험을 수행하여, 압축기 토출량의 차이에 따른 연비의 차이가 특징 지어지는 것을 확인하였다.

프리우스 III의 차량 출력 분석에 기초한 연비 예측 방안에 관한 연구 (A Study on the Fuel Economy Prediction Method Based on Vehicle Power Analysis of PRIUS III)

  • 정재우;서영호;최용준;최성은;김형구;정기윤
    • 한국자동차공학회논문집
    • /
    • 제19권6호
    • /
    • pp.97-106
    • /
    • 2011
  • Both an optimal design of the engine operating strategy and fuel economy prediction technique for a HEV under the vehicle driving condition are very crucial for the development of vehicle fuel economy performance. Thus, in this study, engine operating characteristics of PRIUS III were analyzed with vehicle running conditions and the correlations between vehicle tractive power and fuel consumption were introduced. As a result, fuel economy performance of PRIUS III with various test modes were predicted and verified. Errors of predicted fuel economy were between -5% and -1%.