• Title/Summary/Keyword: Fuel cost

Search Result 1,185, Processing Time 0.036 seconds

A Study on the Strategy of Smart Charging System to Charge the PHEV in the House Which has a 1 kW Fuel Cell Cogeneration System (1 kW 급 가정용 연료전지 코제너레이션 시스템이 설치된 주택 내 플러그인 하이브리드 자동차의 스마트 충전전략 연구)

  • Roh, Chul-Woo;Kim, Min-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.838-843
    • /
    • 2008
  • Cause of struggling to escape from dependency of fossil fuels, the fuel cell and the Plug-in Hybrid Electric Vehicle (PHEV) draw attention in the all of the world. Especially, the Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems have been anticipated for next generation's energy supplying system, and we can predict the PHEV will enlarge the market share in the next few years to reduce not only the air pollution in the metropolis but the fuel-expenses of commuters. This paper presents simulation results about the strategy of smart charging system for PHEV in the residential house which has 1 kW PEMFC cogeneration system. The smart charging system has a function of recommending the best time to charge the battery of PHEV by the lowest energy cost. The simulated energy cost for charging the battery based on the electricity demand data pattern in the house. The house which floor area is $132\;m^2$ (40 pyeong.). In these conditions, the annual gasoline, electricity, and total energy cost to fuel the PHEV versus Conventional Vehicle (CV) have been simulated in terms of cars' average life span in Korea.

  • PDF

Uranium Enrichment Reduction in the Prototype Gen-IV Sodium-Cooled Fast Reactor (PGSFR) with PBO Reflector

  • Kim, Chihyung;Hartanto, Donny;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.351-359
    • /
    • 2016
  • The Korean Prototype Gen-IV sodium-cooled fast reactor (PGSFR) is supposed to be loaded with a relatively-costly low-enriched U fuel, while its envisaged transuranic fuels are not available for transmutation. In this work, the U-enrichment reduction by improving the neutron economy is pursued to save the fuel cost. To improve the neutron economy of the core, a new reflector material, PbO, has been introduced to replace the conventional HT9 reflector in the current PGSFR core. Two types of PbO reflectors are considered: one is the conventional pin-type and the other one is an inverted configuration. The inverted PbO reflector design is intended to maximize the PbO volume fraction in the reflector assembly. In addition, the core radial configuration is also modified to maximize the performance of the PbO reflector. For the baseline PGSFR core with several reflector options, the U enrichment requirement has been analyzed and the fuel depletion analysis is performed to derive the equilibrium cycle parameters. The linear reactivity model is used to determine the equilibrium cycle performances of the core. Impacts of the new PbO reflectors are characterized in terms of the cycle length, neutron leakage, radial power distribution, and operational fuel cost.

Optimization of the Korean Nuclear Fuel Cycle Using Linear Programming (선형계획법을 이용한 한국 원전연료주기의 최적화)

  • Kim, J.I.;Chae, K.N.;Lee, B.W.
    • Nuclear Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.721-729
    • /
    • 1995
  • The Korean optimal nuclear fuel cycle strategy from the year 2000 to 2030 is derived using linear programming. The fuel cycle cost, the cost uncertainty, and the natural uranium consumption are used as the criteria for the optimization. These objectives are compromised by fuzzy decision-making technique which maximizes the minimum degree of satisfaction among the three objectives. The options for the back-end fuel cycle are direct disposal, reprocessing, and DUPIC. The optimal fuel cycle strategy of Korea is to start reprocessing in around 2010 and increase its capacity with the maximum of 800 tHM in around 2025, and to star DUPIC processing in 2025. The cot uncertainty and the natural uranium consumption of the optimal fuel cycle strategy are reduced by 7.1% and 6.1%, respectively, at the cost penalty of 5.4% compared with the cost-only optimal solution.

  • PDF

ASSESSMENT OF ACTIVITY-BASED PYROPROCESS COSTS FOR AN ENGINEERING-SCALE FACILITY IN KOREA

  • KIM, SUNGKI;KO, WONIL;BANG, SUNGSIG
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.849-858
    • /
    • 2015
  • This study set the pyroprocess facility at an engineering scale as a cost object, and presented the cost consumed during the unit processes of the pyroprocess. For the cost calculation, the activity based costing (ABC) method was used instead of the engineering cost estimation method, which calculates the cost based on the conceptual design of the pyroprocess facility. The calculation results demonstrate that the pyroprocess facility's unit process cost is $194/kgHM for pretreatment, $298/kgHM for electrochemical reduction, $226/kgHM for electrorefining, and $299/kgHM for electrowinning. An analysis demonstrated that the share of each unit process cost among the total pyroprocess cost is as follows: 19% for pretreatment, 29% for electrochemical reduction, 22% for electrorefining, and 30% for electrowinning. The total unit cost of the pyroprocess was calculated at $1,017/kgHM. In the end, electrochemical reduction and the electrowinning process took up most of the cost, and the individual costs for these two processes was found to be similar. This is because significant raw material cost is required for the electrochemical reduction process, which uses platinum as an anode electrode. In addition, significant raw material costs are required, such as for $Li_3PO_4$, which is used a lot during the salt purification process.

Fuel Cost Analysis of CANDU-PHWR Wolsung Nuclear Power Plant Unit 1

  • Lee, Ik-Hwan;Lee, Chang-Kun;Yang, Chang-Guk;Yook, Chong-Chul
    • Nuclear Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.151-163
    • /
    • 1977
  • Being based on the Segal method, calculation was carried out for the natural uranium nuclear fuel cost with Zircaloy-4 cladding having design Parameters of Wolsung Nuclear Power Plant, CANDU-PHWR (Unit 1) , currently under construction in Korea aiming at its completion in 1982. An attempt was also made for tile sensitivity analysis of each fuel component; j. e., depreciation of fuel manufacturing plant caused by its life time, its load factor, production scale expansion of plant facilities, variations of construction and operating costs of fuel manufacturing plant, fluctuation of interest rates, extent of uranium ore price increases and effect of learning factor.

  • PDF

The forecast of renewable generation cost in Korea (국내 신재생에너지 원별 발전단가 전망)

  • Kim, Kilsin;Han, Youri
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.140-140
    • /
    • 2011
  • Korea's RPS, which requires that power generation companies obtain a minimum percentage of their generation by using renewable energy, will take effect in 2012. Based on the first-year law enforcement, generation companies have to satisfy 2% of RPS compliance ratio in 2012. Then, the required RPS compliance ratio will increase up to 10% in 2022. Thus generation companies need to construct power plants that utilize various types of renewable energy sources such as PV and wind power. This work is aimed to analyze the cost of such a renewable power source in terms of capital cost, capacity factor, and fuel cost. We provide the analytical expectation on the renewable power generation cost of 2012 focusing on PV, onshore/offshore wind, fuel cell, and IGCC, which are focused by government policy.

  • PDF

CORE DESIGN FOR HETEROGENEOUS THORIUM FUEL ASSEMBLIES FOR PWR(1)-NUCLEAR DESIGN AND FUEL CYCLE ECONOMY

  • BAE KANG-MOK;KIM MYUNG-HYUN
    • Nuclear Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.91-100
    • /
    • 2005
  • Kyung-hee Thorium Fuel (KTF), a heterogeneous thorium-based seed and blanket design concept for pressurized light water reactors, is being studied as an alternative to enhance proliferation resistance and fuel cycle economics of PWRs. The proliferation resistance characteristics of the KTF assembly design were evaluated through parametric studies using neutronic performance indices such as Bare Critical Mass (BCM), Spontaneous Neutron Source rate (SNS), Thermal Generation rate (TG), and Radio-Toxicity. Also, Fissile Economic Index (FEI), a new index for gauging fuel cycle economy, was suggested and applied to optimize the KTF design. A core loaded with optimized KTF assemblies with a seed-to-blanket ratio of 1: 1 was tested at the Korea Next Generation Reactor (KNGR), ARP-1400. Core design characteristics for cycle length, power distribution, and power peaking were evaluated by HELIOS and MASTER code systems for nine reload cycles. The core calculation results show that the KTF assembly design has nearly the same neutronic performance as those of a conventional $UO_2$ fuel assembly. However, the power peaking factor is relatively higher than that of conventional PWRs as the maximum Fq is 2.69 at the M$9^{th}$ equilibrium cycle while the design limit is 2.58. In order to assess the economic potential of a heterogeneous thorium fuel core, the front-end fuel cycle costs as well as the spent fuel disposal costs were compared with those of a reference PWR fueled with $UO_2$. In the case of comprising back-end fuel cycle cost, the fuel cycle cost of APR-1400 with a KTF assembly is 4.99 mills/KWe-yr, which is lower than that (5.23 mills/KWe-yr) of a conventional PWR. Proliferation resistance potential, BCM, SNS, and TG of a heterogeneous thorium-fueled core are much higher than those of the $UO_2$ core. The once-through fuel cycle application of heterogeneous thorium fuel assemblies demonstrated good competitiveness relative to $UO_2$ in terms of economics.

Economic analysis on development of low-carbon gear for anchovy boat seine (탄소저감형 권현망어구 개발의 경제성 분석)

  • Park, Seong-Wook;Lee, Kyounghoon;Kang, Min-Joo;Park, Seong-Kwae;Lee, Chun-Woo;Lee, Jihoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.49 no.3
    • /
    • pp.291-300
    • /
    • 2013
  • The main purpose of this study is to analyse economic feasibility of low-carbon-oriented gear for anchovy boat seine. The results of benefit/cost analysis showed that use of the low-carbon fishing gear is economically feasible. Considering the fuel saving and relatively low $CO_2$ emission by reducing the resistance of gear, net present value by such type 1 gear improvement was estimated about -2,490 ~ -1,580 million won with the benefit-cost ratio 0.81~ 0.88. And net present value by such type 2 gear improvement was estimated about 6,540 ~ 7,780 million won with the benefit-cost ratio 1.79 ~ 1.94. Development of lowcarbon trawl gear would render significant contributions to reducing $CO_2$ emission in fishing operations and lead to reduce fishing costs due to fuel savings.

A study on the selection of optimal marine engine and its techno- economical evaluation method (최적박용기관의 선정 및 그의 경제성 평가방법에 관한 연구)

  • 전효중;조기열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.51-66
    • /
    • 1984
  • The cost percentage of engine part in the total building cost of a ship is about 30-40% and the main engine occupies about 50% of the engine part cost. For certain ships the fuel bill can be as high as about 60-70% of the total operating cost after two oil shocks and its amount for one year is nearly equivalent to her main engine price. This fact has further increased the pressure on the engine builders to develop engines of higher efficiency and better possibilities to burn further deteriorated fuel qualities. But the energy-saving plants are ordinarily more expensive and their available amount of exhaust gas energy is less and therefore, they are not always profitable and optimum systems. This paper is prepared to decide the most economical and efficient engine systems by presenting reasonable selecting and economical evaluation methods of the main engine, which is the largest single unit and the most expensive, and its auxiliaries. In order to demonstrate the application of investigated methods in a practical case, a 46, 000 DWT class bulk carrier is selected as a model ship and her main engine and its auxiliaries are selected and evaluated. The result shows that the optimum determined has one year three months POP, 0.903 IRR at a year, 4, 116, 000 dollars PW in 15 years (for 5% escalation rate of fuel cost) and 9.522 BCR for same condition, when the engine plant of a same existing ship is taken as the basis.

  • PDF

Fuel Cycle Cost Modeling for the Generation IV SFR at the Pre-Conceptual Design Stage

  • Kim, Seong-Ho;Moon, Kee-Hwan;Kim, Young-In
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.11a
    • /
    • pp.51-52
    • /
    • 2009
  • Recently, several industrial countries using the fission energy have given attention to the Gen-IV SFR (sodium-cooled fast reactor) for achieving sustainable nuclear energy systems. In this context, an SFR is currently developed at the design concepts study stage in the Republic of Korea [Kim & Hahn 200909]. The sustainability of systems means economic, environment-friendly, proliferation-resistant, and safer systems. More specifically, this sustainability can be accomplished in terms of resource recycling and radioactive waste reduction. In the present work, the objective of fuel cycle cost modeling is to identify the impact of various conceptual options as a cost reduction measure for the Gen-IV SFR at the design concepts study stage. It facilitates the selection of several reasonable fuel cycle pathways for the future Gen-IV SFR from an economic viewpoint.

  • PDF