• 제목/요약/키워드: Fuel cell hybrid vehicle

검색결과 98건 처리시간 0.029초

연료전지/배터리 하이브리드 차량 개발 (Development of Fuel Cell/Battery Hybrid Vehicle)

  • 손영준;박구곤;임성대;엄석기;양태현;윤영기;이원용;김창수
    • 한국전기화학회:학술대회논문집
    • /
    • 한국전기화학회 2005년도 수소연료전지공동심포지움 2005논문집
    • /
    • pp.103-110
    • /
    • 2005
  • Fuel cell systems are consisted of various parts, for example fuel cell stack, fuel supplier, electrical converters, controllers and so on. Each components of system should have appropriate specification for their applications as well as simplicity. Because thermal load can be managed simply by using fans without any water cooling system, the air-cooled PEMFC is widely used in sub kW and around 1kW systems. The performance of an air-cooled system is highly dependent on ambient temperature and humidity. In this paper, the air-cooled PEMFC systems are developed and investigated to study the operating characteristics in the aspect of the thermal and water coupled management by the control of the axial fans and compressors. Various experiments were also conducted to get the cell voltage distribution, the relative humidity of the reactant gas and the thermal management by axial cooling fans, which cannot be observed in single cell experiment. After then, as practical applications, portable fuel cell system and a hybrid electric cart were successfully integrated and operated by using this air-cooled stack.

  • PDF

차세대 복합형 전기자동차의 전력 및 에너지 저장장치 (POWER AND ENERGY STORAGE DEVICES FOR NEXT GENERATION HYBRID ELECTRIC VEHICLE)

  • 김민회
    • 한국산업융합학회 논문집
    • /
    • 제1권1호
    • /
    • pp.31-41
    • /
    • 1998
  • 근래 전 세계적으로 전기자동차에 대한 광범위한 연구개발의 근본 동기는 연료보존과 환경공해의 영향을 재어하기 위한 것이다. 본 논문은 차세대 복합형 전기자동차에 적용시키기 위하여 현재 이용이 가능한 여러 가지 형태의 에너지 저장장치, 즉 밧데리, 후라이휠 및 울트라 커페시터와 에너지원으로 사용되는 동력장치인 가솔린엔진, 디젤엔진, 가스터빈 및 연료전지의 특성에 대하여 검토한 것이다. 기술적인 추세에 따라 효율적인 적용 가능성을 비교하여 본 결과 가까운 장래에 복합형 전기자동차에 이용 가능한 시스템으로 에너지 저장장치는 밧데리이고 동력원으로는 가솔린 엔진임을 보여 주었다.

  • PDF

고분자 전해질형 연료전지/2차전지/태양전지 하이브리드 자동차에 대한 모델링 및 특성평가 (Modeling and Analysis of PEMFC/Battery/Photovoltaic Hybrid Vehicle)

  • 지현진;안효정;차석원;배중면
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2255-2260
    • /
    • 2007
  • This Paper focuses on modeling and simulation to analyze the characteristic of hybrid vehicle. The system includes proton exchange membrane fuel cell(PEMFC), photovoltaic generator(PV), lead-acid battery, motor, vehicle and controller. Main electricity is produced by the PEMFC and battery to meet the requirements of a user load. When vehicle is parked in a sunny place, extra power is generated by the photovotaics and is charged in a battery for next drive. Further we evaluate usefulness of this hybrid vehicle by using ADVISOR - the advanced vehicle simulator written in the Matlab/Simulink environment. According to simulation results, the extra power obtained by photovoltaics which have been explored in nature conditions can help to reduce the electrical load of PEMFC and increase the efficiency (over 30%).

  • PDF

연료전지-태양전지 하이브리드 자동차에 대한 제어전략 및 특성평가 (Control Strategy and Characteristic Analysis of PEMFC/Photovoltaics Hybrid Vehicle)

  • 안효정;지현진;배중면;차석원
    • 대한기계학회논문집B
    • /
    • 제31권10호
    • /
    • pp.840-847
    • /
    • 2007
  • This Paper focuses on modeling and simulation to analyze the characteristic of hybrid vehicle. The system includes a proton exchange membrane fuel cell(PEMFC), photovoltaic generator(PV), lead-acid battery, motor, vehicle and controller. Main electricity is produced by the PEMFC and battery to meet the requirements of a user load. When vehicle is parked in a sunny place, extra power is generated by the photovotaics and is charged in a battery for next drive. Further we evaluate usefulness of this hybrid vehicle by using ADVISOR - the advanced vehicle simulator written in the Matlab/Simulink environment. According to simulation results, the extra power obtained by photovoltaics which have been explored in nature conditions can help to reduce the electrical load of PEMFC and increase the efficiency (over 21 %).

연료전지 하이브리드 자동차의 ECMS (Equivalent Consumption Minimization Strategy of Fuel Cell Hybrid Vehicles)

  • 정춘화;박영일;임원식;차석원
    • 한국자동차공학회논문집
    • /
    • 제20권6호
    • /
    • pp.46-51
    • /
    • 2012
  • Fuel Cell Hybrid Vehicles (FCHVs) have become a major topic of interest in the automotive industry owing to recent energy supply and environmental problems. Several types of power management strategies have been developed to improve the fuel economy of FCHVs including optimal control strategy based on optimal control theory, rule-based strategy, and equivalent consumption minimization strategy (ECMS). The ECMS is applied in this study. This strategy is based on the heuristic concept that the usage of the electric energy can be exchanged to equivalent fuel consumption. This strategy is known as one of the promising solutions for real-time control of hybrid vehicles. The ECMS for an FCHV is introduced in this paper as well as the equivalent fuel consumption parameter. The relationship between the battery final state of charge (SOC) and the fuel consumption while changing the equivalent fuel consumption parameter is obtained for three different driving cycles. The function of the equivalent fuel consumption parameter is also discussed.

수소 연료전지 차량용 고전압 케이블과 일반 케이블에 의한 차량 전자파 방사 특성 수치해석 연구 (Numerical Analysis of Electromagnetic Radiation Characteristics by High Voltage and General Cables for Fuel Cell Electric Vehicle (FCEV))

  • 이순용;서원범;임지선;최재훈
    • 한국수소및신에너지학회논문집
    • /
    • 제22권2호
    • /
    • pp.152-160
    • /
    • 2011
  • The electromagnetic characteristics of FCEVs (fuel cell electric vehicles) are much different from the existing combustion engine cars as well as hybrid, plug-in-hybrid, and pure electric vehicles due to the high voltage/current generated by a fuel cell stack which uses a compressed hydrogen gas reacted with oxygen. To operate fuel cell stack efficiently, BOP (Balance of Plant) which is consisted of many motors in water pump, air blower, and hydrogen recycling pump as well as inverters for these motors is essential. Furthermore, there are also electric systems for entertainment, information, and vehicle control such as navigation, broadcasting, vehicle dynamic control systems, and so on. Since these systems are connected by high voltage or general cables, EMC (Electromagnetic compatibility) analysis for high voltage and general cable of FCEV is the most important element to prevent the possible electric functional safety errors. In this paper, electromagnetic fields by high voltage and general cables for FCEVs is studied. From numerical analysis results, total time harmonic electromagnetic field strength from high voltage and general cables have difference of 13~16 dB due to ground effect by impedance matching. The EMI results of FECV at 10 m distance shows difference of 41 dB at 30 MHz and 54 dB at 230 MHz compared with only general cable routing.

하이브리드 트램의 시스템 구성 (Main Systems Composing Hybrid Tram)

  • 장세기;이강원;배창한
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.730-734
    • /
    • 2007
  • National projects on renewable energy and new energy are driven more actively than ever in many countries for the exhaustion of fossil fuel energy from the turn of the century. Such activities began to spread out in railway industry with centering around west European countries. Electric energy is generated on the hybrid vehicle itself, which contributes to reduction of the cost for construction of the infrastructure required for the supply of electric power. Hybrid tram is mainly composed of propulsion system to control electric energy, automatic guidance system to control steering and operation, and central vehicle unit to control and monitor major electronic devices. Generation and supply of electric power are made by the combination of engine generator and battery, or fuel cell and super capacitor.

  • PDF

친환경자동차의 전기안전을 위한 절연저항 측정에 관한 연구 (A Study on the Insulation Resistance Measurement Technique for Electrical Safety of Green Car)

  • 이기연;김동욱;김향곤;문현욱
    • 전기학회논문지P
    • /
    • 제58권4호
    • /
    • pp.597-601
    • /
    • 2009
  • Green car such as a hybrid electrical vehicle and fuel cell vehicle is developed as a commercial target. UN/ECE/WP29 is developing GTR of HFCV and establishing the regulation and standard of electrical safety by ELSA. The regulation and standard about Electrical safety of vehicle are prescribed in ISO, UN/ECE, FMVSS, Japanese Attachment and so on, in case of insulation resistance is referred to keep more than 100/Vdc, 500/Vac. However, accurate method to measure insulation resistance agreeable to structure of vehicle does not exist now, it is actually that correctness of measurement drops according to the feature of battery and fuel cell stack. In this paper, the method to measure insulation resistance for protection against electrical shock by direct contact or indirect contact in Green Car will be indicated by making a comparison between the insulation measurement in standard of electrical safety and the experiment results for HEV and HFCV.

Energy Management and Performance Evaluation of Fuel Cell Battery Based Electric Vehicle

  • Khadhraoui, Ahmed;SELMI, Tarek;Cherif, Adnene
    • International Journal of Computer Science & Network Security
    • /
    • 제22권3호
    • /
    • pp.37-44
    • /
    • 2022
  • Plug-in Hybrid electric vehicles (PHEV) show great potential to reduce gas emission, improve fuel efficiency and offer more driving range flexibility. Moreover, PHEV help to preserve the eco-system, climate changes and reduce the high demand for fossil fuels. To address this; some basic components and energy resources have been used, such as batteries and proton exchange membrane (PEM) fuel cells (FCs). However, the FC remains unsatisfactory in terms of power density and response. In light of the above, an electric storage system (ESS) seems to be a promising solution to resolve this issue, especially when it comes to the transient phase. In addition to the FC, a storage system made-up of an ultra-battery UB is proposed within this paper. The association of the FC and the UB lead to the so-called Fuel Cell Battery Electric Vehicle (FCBEV). The energy consumption model of a FCBEV has been built considering the power losses of the fuel cell, electric motor, the state of charge (SOC) of the battery, and brakes. To do so, the implementing a reinforcement-learning energy management strategy (EMS) has been carried out and the fuel cell efficiency has been optimized while minimizing the hydrogen fuel consummation per 100km. Within this paper the adopted approach over numerous driving cycles of the FCBEV has shown promising results.

하이브리드 자동차를 위한 플라이 휠 에너지 저장 기술 (FES(Flywheel Energy Storage) is ready for HEV(Hybrid Electric Vehicle))

  • 안형준;박인황;한동철
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.366-369
    • /
    • 2005
  • 최근 환경 및 에너지 문제가 자동차 산업의 중요한 이슈로 인식되면서 하이브리드 자동차(Hybrid Electric Vehicle) 기술과 연료 전지 자동차(Fuel Cell Vehicle)등이 주목받고 있다. 특히 하이브리드 자동차는 요구되는 동력과 생성되는 동력의 차이 때문에 순시 동력 저장 장치 (peak power buffer)가 필요한데, 반복적인 충/방전 싸이클에서 용량의 감소 없이 높은 단위 질량당의 동력과 에너지를 가지며 부피, 효율, 수명 면에서도 우수한 플라이 휠 에너지 저장장치가 이러한 동력 저장 장치로 적합하다. 본 논문은 하이브리드 자동차를 위한 플라이 휠 에너지 저장 장치의 현 상태 (state of art)를 기술한다. 첫번째로, 플라이 휠 에너지 저장장치의 기원과 배경을 설명한다. 두 번째로 하이브리드 자동차를 위한 플라이 휠 에너지 저장 장치의 세부 사항을 요약하고, 플라이 휠 에너지 저장을 이용한 하이브리드 자동차의 예와 플라이 휠 에너지 저장장치의 설계 쟁점과 자동차에 적용시키기 위한 최근 기술적 진보를 논의한다. 마지막으로, 플라이 휠 에너지 저장장치의 파급 효과와 다른 적용 예를 소개한다.

  • PDF