• Title/Summary/Keyword: Fuel cell hybrid vehicle

Search Result 98, Processing Time 0.025 seconds

A Study of Battery Charging Time for Efficient Operation of Fuel Cell Hybrid Vehicle (연료전지 하이브리드 차량의 효율적인 작동을 위한 배터리 충전 시기에 대한 연구)

  • Jin, Wei;Kwon, Oh-Jung;Jo, In-Su;Hyun, Deok-Su;Cheon, Seung-Ho;Oh, Byeong-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.1
    • /
    • pp.38-44
    • /
    • 2009
  • Recently, the research focused on fuel cell hybrid vehicles (FCHVs) is becoming an attractive solution due to environmental pollution generated by fossil fuel vehicles. The proper energy control strategy will result in extending the fuel cell lifetime, increasing of energy efficiency and an improvement of vehicle performance. Battery state of charge (SoC) is an important quantity and the estimation of the SoC is also the basis of the energy control strategy for hybrid electric vehicles. Estimating the battery's SoC is complicated by the fact that the SoC depends on many factors such as temperature, battery capacitance and internal resistance. In this paper, battery charging time estimated by SoC is studied by using the speed response and current response. Hybrid system is consist of a fuel cell unit and a battery in series connection. For experiment, speed response of vehicle and current response of battery were determined under different state of charge. As the results, the optimal battery charging time can be estimated. Current response time was faster than RPM response time at low speed and vice versa at high speed.

Sizing of Powertrain in Fuel Cell Hybrid Vehicles (연료전지 하이브리드 자동차의 동력전달계의 용량 선정)

  • Zheng, Chun-Hua;Shin, Chang-Woo;Park, Yeong-Il;Cha, Suk-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.113-118
    • /
    • 2011
  • Fuel Cell Hybrid Vehicle (FCHV) is one of the most promising candidates for the next generation of transportation. It has many outstanding advantages such as higher energy efficiency and much lower emissions than internal combustion engine vehicles. It also has the ability of recovering braking energy. In order to design an FCHV drive train, we need to determine the size of the electric motor, the Fuel Cell System (FCS), and the battery. In this paper, the methodology for the sizing of these components is introduced based on the driveability constraints of the FCHV. A power management strategy is also presented because the battery energy capacity depends on it. The warm-up time of the FCS is also considered in the power management strategy and the simulation result is compared to that without considering the warm-up time.

Comparison and Analysis of Boost Converter Topologies for the DC/DC Converter in Hydrogen Fuel Cell Hybrid Railway Vehicle (수소연료전지 하이브리드 철도차량용 DC/DC 컨버터를 위한 부스트 컨버터 토폴로지 비교 및 분석)

  • Kang, Dong-Hun;Lee, Il-Oun;Lee, Woo-Seok;Yun, Duk-Hyeon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.4
    • /
    • pp.269-278
    • /
    • 2020
  • In this paper, two types of DC/DC converters in a hydrogen fuel cell hybrid railway vehicle system, which serve to charge high-voltage battery and supply power to an inverter for driving a driving motor, were compared and analyzed. A two-level interleaving boost converter and a three-level boost converter were compared and analyzed, and a theoretical design method was proposed to have an efficiency characteristic of over 95%. In addition, a digital controller design method considering the digital phase delay component of DSP (TMS320F28335) is presented. Finally, the validity of the theoretical design of the converter with 20kW power was verified through static and dynamic experiments respectively.

Power System Development of Unmanned Aerial Vehicle using Proton Exchange Membrane Fuel Cell (고분자 전해질 연료전지를 이용한 무인비행체 동력시스템 설계)

  • Jee, Yeong-Kwang;Sohn, Young-Jun;Park, Gu-Gon;Kim, Chang-Soo;Choi, Yu-Song;Cho, Sung-Baek
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.3
    • /
    • pp.250-255
    • /
    • 2012
  • In this paper, the development and performance analysis of a fuel cell-powered unmanned aerial vehicle is described. A fuel cell system featuring 1 kW proton exchange membrane fuel cell combined with a highly pressurized fuel supply system is proposed. For the higher fuel consumption efficiency and simplification of overall system, dead-end type operation is chosen and each individual system such as purge system, fuel supply system, cooling system is developed. Considering that fluctuation of exterior load makes it hard to stabilize fuel cell performance, the power management system is designed using a fuel cell and lithium-ion battery hybrid system. After integration of individual system, the performance of unmanned aerial vehicle is analyzed using data from flight and laboratory test. In the result, overall system was properly operated but for more duration of flight, research on weight lighting and improvement of fuel efficiency is needed to be progressed.

The Feasibility Study on Small-scale Prototype Electric Railway Vehicle Application using Fuel Cell Generation System (연료전지 발전시스템을 이용한 축소형 철도차량 적용 선행연구)

  • Jung, No-Geon;Chang, Chin-Young;Chang, Sang-Hoon;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.184-190
    • /
    • 2014
  • Fuel cell power system, unlike conventional energy sources, converts chemical energy into electrical energy through electrochemical reaction of hydrogen and oxygen. In recent years, railway field as well as mobile fuel cell power system is being studying actively with development of hydrogen storage technologies. This paper presents the feasibility study on small-scale prototype electric railway vehicle application using fuel cell generation system. it is confirmed that proposed fuelcell-battery hybrid system shows good response characteristic about speed and torque based on design of parameter on system. Also as results of response for proposed system modeling, it show that powering mode and braking mode of system is controlled by switching devices of converters.

Band-Gap Reference Voltage Control Strategy for Fuel Cell Hybrid Vehicle

  • Kim, Young-Do;Park, Ki-Bum;Kim, Chong-Eun;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.163-165
    • /
    • 2007
  • Generally, the power management system of fuel cell hybrid vehicle (FCHV) requires a unidirectional DC/DC converter for the fuel cell (FC) and a bidirectional DC/DC converter for the battery. To manage the various power flows between these modules with a simple way, a new band-gap reference voltage (BGRV) control strategy is proposed. The proposed method easily controls this variable power flow by setting the reference voltages of each converter to slightly different values, and it can be simply implemented by commercial controllers as well. The operational principle of proposed method is presented and verified experimentally by the 400W prototype.

  • PDF

Status of fuel cell vehicles (연료 전지 자동차 기술 분석)

  • Lee, Won-Yong;Lee, Bong-Do;Kim, Chang-Soo;Shin, Dong-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.24-26
    • /
    • 1999
  • A new hybrid vehicle Powered by fuel cells is being developed in order to improve the fuel conversion rate and reduce air pollutions. Fuel cell electric vehicle(FCEV) is considered to be the next generation electric vehicle with on board generator. This paper is to determine the current technical status of FCEVs and assess and judge the prospect of the prospects of fuel cell electric engines.

  • PDF

Development of Regenerative Braking Control Algorithm for In-wheel Motor Type Fuel Cell Electric Vehicles Considering Vehicle Stability (차량 안정성을 고려한 인휠모터 방식 연료전지 전기자동차용 회생제동 알고리즘 개발)

  • Yang, D.H.;Park, J.H.;Hwang, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.2
    • /
    • pp.7-12
    • /
    • 2010
  • In these days, the researches about hybrid and fuel cell electric vehicles are actively performed due to the environmental contamination and resource exhaust. Specially, the technology of regenerative braking, converting heat energy to electric energy, is one of the most effective technologies to improve fuel economy. This paper developed a regenerative braking control algorithm that is considered vehicle stability. The vehicle has a inline motor at front drive shaft and has a EHB(Electo-hydraulic Brake) system. The control logic and regenerative braking control algorithm are analyzed by MATLAB/Simulink. The vehicle model is carried out by CarSim and the driving simulation is performed by using co-simulation of CarSim and MATLAB/Simulink. From the simulation results, a regenerative braking control algorithm is verified to improve the vehicle stability as well as fuel economy.

  • PDF

Fuel economy and Life Cycle Cost Analysis of Fuel Cell Hybrid Vehicle (연료전지 하이브리드 자동차의 연료 경제성 및 Life cycle 비용 분석)

  • Jung, Kwi Seong;Oh, Byeong Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.4
    • /
    • pp.287-296
    • /
    • 2002
  • 현재 자동차의 문제점을 해결할 수 있는 가장 착실한 엔진은 수소를 이용한 연료 전지라고 판단된다. 연료전지는 화학적 에너지를 전기적 에너지로 직접 변환하는 장치이다. 순수한 연료전지 차량과 연료전지 하이브리드 차량을 비교 분석하였다. 연료전지 하이브리드 차량에서 고려하여야할 점은 효율, 연료경제성, 출력 특성 등이 있다. FUDS 싸이클 시뮬레이션 비교를 하면 하이브리드화가 순수 연료전지 차량 보다 효율이 높다. 이는 회생 제동 에너지를 이용할 수 있으며 battery를 이용하여 연료전지를 효율적인 영역에서 작동하게 할 수 있기 때문이다. Life cycle 비용은 연료전지의 크기, 연료전지의 가격, 수소의 가격 등에 지배적인 영향을 받는다. 연료전지의 가격이 고가이면 하이브리드화가 유리하나, 연료전지의 가격이 400$/kW 이하가 되면 순수한 연료전지 자동차가 비용면에서 유리 하다.

Basic Design of Phosphoric Acid Fuel Cell/Battery Hybrid Vehicle (인산형 연료전지/축전지 복합 구동 자동차 개념 설계)

  • Lee, Bong-Do;Lee, Won-Yong;Shin, Dong-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.59-61
    • /
    • 1996
  • Fuel cell systems offer high efficiencies for energy conservation for transportation application. In addition, they can operate on alcohols and alternative fuels, while producing little or no noxious emissions. The goal of the fuel cell in transportation should be research and commercialization of fuel cell vehicles as economic competitors for internal combustion engine vehicle. The objective of the present study is to analyze feasibility of the fuel cell/battery combination as a power source for a bus.

  • PDF