• Title/Summary/Keyword: Fuel cell hybrid electric vehicle

Search Result 68, Processing Time 0.022 seconds

DEVELOPMENT OF FUEL CELL HYBRID ELECTRIC VEHICLE PERFORMANCE SIMULATOR

  • Park, C.;Oh, K.;Kim, D.;Kim, H.
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.287-295
    • /
    • 2004
  • A performance simulator for the fuel cell hybrid electric vehicle (FCHEV) is developed to evaluate the potentials of hybridization for fuel cell electric vehicle. Dynamic models of FCHEV's electric powertrain components such as fuel cell stack, battery, traction motor, DC/DC converter, etc. are obtained by modular approach using MATLAB SIMULINK. In addition, a thermodynamic model of the fuel cell is introduced using bondgraph to investigate the temperature effect on the vehicle performance. It is found from the simulation results that the hybridization of fuel cell electric vehicle (FCEV) provides better hydrogen fuel economy especially in the city driving owing to the braking energy recuperation and relatively high efficiency operation of the fuel cell. It is also found from the thermodynamic simulation of the FCEV that the fuel economy and acceleration performance are affected by the temperature due to the relatively low efficiency and reduced output power of the fuel cell stack at low temperature.

Modeling and Energy Management Strategy in Energetic Macroscopic Representation for a Fuel Cell Hybrid Electric Vehicle

  • Dinh, To Xuan;Thuy, Le Khac;Tien, Nguyen Thanh;Dang, Tri Dung;Ho, Cong Minh;Truong, Hoai Vu Anh;Dao, Hoang Vu;Do, Tri Cuong;Ahn, Kyoung Kwan
    • Journal of Drive and Control
    • /
    • v.16 no.2
    • /
    • pp.80-90
    • /
    • 2019
  • Fuel cell hybrid electric vehicle is an attractive solution to reduce pollutants, such as noise and carbon dioxide emission. This study presents an approach for energy management and control algorithm based on energetic macroscopic representation for a fuel cell hybrid electric vehicle that is powered by proton exchange membrane fuel cell, battery and supercapacitor. First, the detailed model of the fuel cell hybrid electric vehicle, including fuel cell, battery, supercapacitor, DC-DC converters and powertrain system, are built on the energetic macroscopic representation. Next, the power management strategy was applied to manage the energy among the three power sources. Moreover, the control scheme that was based on back-stepping sliding mode control and inversed-model control techniques were deduced. Simulation tests that used a worldwide harmonized light vehicle test procedure standard driving cycle showed the effectiveness of the proposed control method.

A Study on the Structure and Characteristics of Light-duty FC Hybrid Vehicle (경부하 FC 하이브리드 자동차의 구조와 특성에 관한 연구)

  • Bong, Tae-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.8
    • /
    • pp.911-917
    • /
    • 2007
  • Global primary energy demand is projected to increase by 1.7% per year from 2000 to 2030. Almost three-quaters of the increase in demand will come from the transportation sector. Fuel cell hybrid vehicle technology has the potential to significantly reduce energy and harmful emissions, as well as our dependence on foreign oil. In this paper, a systematic and logical methodology is developed and improved mainly to design light duty fuel cell hybrid electric vehicle. We investigated structure and characteristics of light duty FC hybrid vehicle carefully. It can easily be expanded to analyze vehicle-to-grid power connectable plug-in NeHEV. A fuel cell hybrid neighbourhood electric vehicle configuration has been studied in-depth utilizing the proposed methodology.

OPERATION ALGORITHMS FOR A FUEL CELL HYBRID ELECTRIC VEHICLE

  • PARK C.;KOOK K.;OH K.;KIM D.;KIM H.
    • International Journal of Automotive Technology
    • /
    • v.6 no.4
    • /
    • pp.429-436
    • /
    • 2005
  • In this paper, operation algorithms are evaluated for a fuel cell hybrid electric vehicle (FCHEV). Power assist, load leveling and equivalent fuel algorithm are proposed and implemented in the FCHEV performance simulator. It is found from the simulation results that the load leveling algorithm shows poor fuel economy due to the system charge and discharge efficiency. In the power assist and equivalent fuel algorithm, the fuel cell stack is operated in a relatively better efficiency region owing to the battery power assist, which provides the improved fuel economy.

Design and Implementation of Modified Current Source Based Hybrid DC - DC Converters for Electric Vehicle Applications

  • Selvaganapathi, S.;Senthilkumar, A.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.2
    • /
    • pp.57-68
    • /
    • 2016
  • In this study, we present the modern hybrid system based power generation for electric vehicle applications. We describe the hybrid structure of modified current source based DC - DC converters used to extract the maximum power from Photovoltaic (PV) and Fuel Cell system. Due to reduced dc-link capacitor requirement and higher reliability, the current source inverters (CSI) better compared to the voltage source based inverter. The novel control strategy includes Distributed Maximum Power Point Tracking (DMPPT) for photovoltaic (PV) and fuel cell power generation system. The proposed DC - DC converters have been analyzed in both buck and boost mode of operation under duty cycle 0.5>d, 0.5<d<1 and 0.5<d for capable electric vehicle applications. The proposed topology benefits include one common DC-AC inverter that interposes the generated power to supply the charge for the sharing of load in a system of hybrid supply with photovoltaic panels and fuel cell PEM. An improved control of Direct Torque and Flux Control (DTFC) based induction motor fed by current source converters for electric vehicle.In order to achieve better performance in terms of speed, power and miles per gallon for the expert, to accepting high regenerative braking current as well as persistent high dynamics driving performance is required. A simulation model for the hybrid power generation system based electric vehicle has been developed by using MATLAB/Simulink. The Direct Torque and Flux Control (DTFC) is planned using Xilinx ISE software tool in addition to a Modelsim 6.3 software tool that is used for simulation purposes. The FPGA based pulse generation is used to control the induction motor for electric vehicle applications. FPGA has been implemented, in order to verify the minimal error between the simulation results of MATLAB/Simulink and experimental results.

FUEL ECONOMY IMPROVEMENT FOR FUEL CELL HYBRID ELECTRIC VEHICLES USING FUZZY LOGIC-BASED POWER DISTRIBUTION CONTROL

  • Ahn, H.S.;Lee, N.S.;Moon, C.W.;Jeong, G.M.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.651-658
    • /
    • 2007
  • This paper presents a new type of fuzzy logic-based power control strategy for fuel cell hybrid electric vehicles designed to improve their fuel economy while maintaining the battery's state of charge. Since fuel cell systems have inherent limitations, such as a slow response time and low fuel efficiency, especially in the low power region, a battery system is typically used to assist them. To maximize the advantages of this hybrid type of configuration, a power distribution control strategy is required for the two power sources: the fuel cell system and the battery system. The required fuel cell power is procured using fuzzy rules based on the vehicle driving status and the battery status. In order to show the validity and effectiveness of the proposed power control strategy, simulations are performed using a mid-size vehicle for three types of standard drive cycle. First, the fuzzy logic-based power control strategy is shown to improves the fuel economy compared with the static power control strategy. Second, the robustness of the proposed power control strategy is verified against several variations in system parameters.

Design and Performance Evaluation for a Fuel Cell/Battery Hybrid Mini-Bus Based on a Simulation (시뮬레이션 기반 연료전지/2차전지 하이브리드 미니버스의 설계 및 성능 평가)

  • Kim, Min-Jin;Kong, Nak-Won;Lee, Won-Yong;Kim, Chang-Soo
    • Journal of Hydrogen and New Energy
    • /
    • v.18 no.1
    • /
    • pp.60-66
    • /
    • 2007
  • In terms of the vehicle efficiency, a fuel cell hybrid system has advantages compared to a conventional internal combustion engine and a fuel cell alone-powered system. The efficiency of the fuel cell hybrid vehicle mainly depends on the maximum power of the fuel cell and therefore it is important to decide the design value of the fuel cell maximum power. In this paper, to estimate the performance of the fuel cell hybrid mini-bus in the design phase the simulator based on the models for the fuel cell stack, the electric battery, the fuel cell balance of plant, the controller, and the vehicle itself is proposed. Additionally, the hybrid mini-bus efficiencies with several different fuel cell powers are simulated for a city driving schedule and are compared on another. Consequently, the proposed simulation scheme is useful to determine the best design value of the fuel cell hybrid vehicles.

Comparative Study on Power Control Strategies for Fuel Cell Hybrid Electric Vehicles (연료전지 하이브리드 자동차에 대한 에너지 운용전략의 비교 연구)

  • Ki, Young-Hun;Jeong, Gu-Min;Ahn, Hyun-Sik;Kim, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.198-200
    • /
    • 2006
  • In this paper, three types of power control strategies for controlling a Fuel Cell Hybrid Electric Vehicle(FCHEV) are studied in view of fuel economy. The FCHEV has become one of alternatives for future vehicles since it does emit water only without any exhaust gas while it has a high well-to-wheel efficiency together with an energy saving due to regenerative braking. However, it has also several disadvantages such as the complexity of vehicle system, the increased weight and the extra battery cost. Among various power control strategies, a static power control strategy, a power assist control strategy and a fuzzy logic-based power control strategy are simulated and compared to show the effectiveness of each method.

  • PDF

Green pathway to hydrogen fuel cell vehicle (수소 연료전지차로의 전환을 위한 녹색 전략)

  • Lee, Munsu;Lee, Minjin;Lee, Younghee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.152.1-152.1
    • /
    • 2011
  • This study analyzes transitions to a green path in transportation system in South Korea. We develop transportation system model with four new technology options, green cars; Hybrid electric vehicle, plug-in hybrid vehicle, electric vehicle and fuel cell vehicle. Among those technologies fuel cell vehicle is the best option assuming no GHG emissions when driving. We use MESSAGE model to get an optimal solution of pathway for high deployment of fuel cell vehicles under the Korea BAU transportation model. Among hydrogen production sources, off gas hydrogen is most economic since it is hardly used to other chemical sources or emits in South Korea. According to off gas hydrogen projection it can run 1.8 million fuel cell vehicles in 2040 which corresponds to 10% of all passenger cars expected in Korea in 2040. However, there are concerns associated with technology maturity, cost uncertainty which has contradictions. But clean pathway with off gas and renewable sources may provide a strong driving force for energy transition in transportation in South Korea.

  • PDF

Development of Tucson Fuel Cell Hybrid Electric Vehicle (투싼 연료전지 하이브리드 차량 개발)

  • Jeon Soonil;Choi Seoho;Kwon Soonwoo;Lee Kyuil;Jeong Sungjin;Yun Seong Gon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.357-360
    • /
    • 2005
  • Hyundai Motor Company developed the second generation of fuel cell hybrid electric vehicle based on Tucson SUV in 2004. This vehicle has cold start capability below -10C and its driving performances including maximum speed and accelerating time are almost similar to conventional Tucson SUV's performances without any sacrifice in terms of cabin space. Especially. the cold start capability was realized by utilizing only internal power sources such as fuel cell power and high voltage lithium ion polymer battery. In this paper, we will briefly introduce specifications of Tucson FCEV and its driving performances based on field test and simulations.

  • PDF