• Title/Summary/Keyword: Fuel cell generation

Search Result 526, Processing Time 0.023 seconds

The Technology Development and Substantiation of Small Hydrogen Powered Vessel (소형 수소추진선박 기술 개발 및 실증 )

  • JAEWAN LIM;SEJUN LEE;SANGJIN YOON;OCKTAECK LIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.555-561
    • /
    • 2023
  • In this study, we proposed a standard model for the design, construction and demonstration of the technology development and substantiation of small hydrogen powered vessel in order to respond to the alternative fuel-using vessel market that requires the use of low-carbon/carbon-free fuel as a greenhouse gas reduction measure. The hydrogen fuel cell-based electric propulsion system developed through this is optimized through performance and durability tests on the land-based test site (LBTS), and the electric propulsion system applied to this result is mounted on a small hydrogen propulsion vessel and operated. Simultaneously, through the digital twin technology between the LBTS and the hydrogen-propelled vessel on the sea, the technology that can predict and diagnose the problems that can occur in the electric propulsion system of the vessel is applied to carry out the empirical study of the hydrogen-propelled vessel. In addition, we propose a commercialization model by analyzing the economic feasibility of the demonstration vessel.

Electricity Generation Coupled with Wastewater Treatment Using a Microbial Fuel Cell Composed of a Modified Cathode with a Ceramic Membrane and Cellulose Acetate Film

  • Seo, Ha-Na;Lee, Woo-Jin;Hwang, Tae-Sik;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.1019-1027
    • /
    • 2009
  • A noncompartmented microbial fuel cell (NCMFC) composed of a Mn(IV)-carbon plate and a Fe(III)-carbon plate was used for electricity generation from organic wastewater without consumption of external energy. The Fe(III)-carbon plate, coated with a porous ceramic membrane and a semipermeable cellulose acetate film, was used as a cathode, which substituted for the catholyte and cathode. The Mn(IV)-carbon plate was used as an anode without a membrane or film coating. A solar cell connected to the NCMFC activated electricity generation and bacterial consumption of organic matter contained in the wastewater. More than 99% of the organic matter was biochemically oxidized during wastewater flow through the four NCMFC units. A predominant bacterium isolated from the anode surface in both the conventional and the solar cell-linked NCMFC was found to be more than 99% similar to a Mn(II)-oxidizing bacterium and Burkeholderia sp., based on 16S rDNA sequence analysis. The isolate reacted electrochemically with the Mn(IV)-modified anode and produced electricity in the NCMFC. After 90 days of incubation, a bacterial species that was enriched on the Mn(IV)-modified anode surface in all of the NCMFC units was found to be very similar to the initially isolated predominant species by comparing 16S rDNA sequences.

The Structure Improvement of Microbial Fuel Cell to Generate Electricity from swine wastewater (가축분뇨를 이용하는 미생물연료전지 개발을 위한 구조개선)

  • Jang, Jaekyung;Sun, RyouYoung;Lee, SungHyoun;Kim, JongGoo;Kang, YounKoo;Kim, Young Hwa
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.252.1-252.1
    • /
    • 2010
  • These studies convert to useful electricity from swine wastewater and to treat this wastewater. In order to operate the microbial fuel cell(MFC) for the swine wastewater, the anode volume of MFCs was scaled up with 5L in the vacant condition. Graphite felts and low-priced mesh stainless-less as electrode had mixed up and packed into the anode compartment. The meshed stainless-less electrode could also be acted the collector of electron produced by microorganisms in anode. For a cathode compartment, graphite felt loaded Pt/C catalyst was used. Graphite felt electrode embedded in the anode compartment was punched holds at regular intervals to prevent occurred the channeling phenomenon. The sources of seeding on microbial fuel cell was used a mixture of swine wastewater and anaerobic digestion sludge(1:1). It was enriched within 6 days. Swine wastewater was fed with 53.26 ml/min flow rate. The MFCs produced a current of about 17 mA stably used swine wastewater with $3,167{\pm}80mg/L$. The maximum power density and current density was 680 $mW/m^3$ and 3,770 $mA/m^3$, respectively. From these results it is showed that treatment of swine wastewater synchronizes with electricity generation using modified low priced microbial fuel cell.

  • PDF

Development of 1 kW class PEFC co-generation system for buildings (1kW 급 건물용 연료전지 시스템 개발 현황)

  • Jun, Hee-Kwon;Hwang, Jung-Tae;Lee, Kap-Sik;Choi, Choeng-Hoon;Lee, Dong-Hwal;Bae, Joon-Kang
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.328-330
    • /
    • 2009
  • 1 kW class Polymer Electrolyte Fuel Cell(PEFC) co-generation systems have been developed from 2001 and evaluated for improvement of efficiency, durability and reliability of the system. This paper introduce new version system including with excellent reliability, durability and user friendly applications. Its electrical and overall efficiency showed 35 % and 80 %, respectively, and noise level of the system was less than 45 dB. In addition, this system have various functions such as load change, $N_2$ less purge, low emission and low temperature operation ($-15^{\circ}C$) through development of operation logic. This system was designed for convenient installation in indoor and outdoor due to the compactness of size and the separation of electrical and heat recovery units, which means a user can select the size of heat recovery unit.

  • PDF

Maximum Efficiency Point Tracking Algorithm Using Oxygen Access Ratio Control for Fuel Cell Systems

  • Jang, Min-Ho;Lee, Jae-Moon;Kim, Jong-Hoon;Park, Jong-Hu;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.194-201
    • /
    • 2011
  • The air flow supplied to a fuel cell system is one of the most significant factors in determining fuel efficiency. The conventional method of controlling the air flow is to fix the oxygen supply at an estimated constant rate for optimal efficiency. However, the actual optimal point can deviated from the pre-set value due to temperature, load conditions and so on. In this paper, the maximum efficiency point tracking (MEPT) algorithm is proposed for finding the optimal air supply rate in real time to maximize the net-power generation of fuel cell systems. The fixed step MEPT algorithm has slow dynamics, thus it affects the overall efficiency. As a result, the variable step MEPT algorithm is proposed to compensate for this problem instead of a fixed one. The complete small signal model of a PEM Fuel cell system is developed to perform a stability analysis and to present a design guideline. For a design example, a 1kW PEM fuel cell system with a DSP 56F807 (Motorola Inc) was built and tested using the proposed MEPT algorithm. This control algorithm is very effective for a soft current change load like a grid connected system or a hybrid electric vehicle system with a secondary energy source.

The forecast of renewable generation cost in Korea (국내 신재생에너지 원별 발전단가 전망)

  • Kim, Kilsin;Han, Youri
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.140-140
    • /
    • 2011
  • Korea's RPS, which requires that power generation companies obtain a minimum percentage of their generation by using renewable energy, will take effect in 2012. Based on the first-year law enforcement, generation companies have to satisfy 2% of RPS compliance ratio in 2012. Then, the required RPS compliance ratio will increase up to 10% in 2022. Thus generation companies need to construct power plants that utilize various types of renewable energy sources such as PV and wind power. This work is aimed to analyze the cost of such a renewable power source in terms of capital cost, capacity factor, and fuel cost. We provide the analytical expectation on the renewable power generation cost of 2012 focusing on PV, onshore/offshore wind, fuel cell, and IGCC, which are focused by government policy.

  • PDF

Single Cell Stacked Planar Type SOFC Assembled Using a Ag-Current Collector (Ag 집전체를 적용한 평판형 SOFC 단전지)

  • Cho, Nam-Ung;Hwang, Soon-Cheol;Lee, In-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.12
    • /
    • pp.720-726
    • /
    • 2007
  • Current collectors of SOFC play a significant role on the performance of power generation. In this study a single cell stacked SOFC was assembled using Ag-mesh as a cathode current collector, and evaluated its performance. No gas leakages of the single cell stack occurred in the tests of gas detection and OCV measurement. The OCV and initial power of the stack were 1.09V and $0.45W/cm^2$, respectively, under the flow rates of air at 2,500 cc/min and $H_2$ at 1,000 cc/min at the test temperature of $750^{\circ}C$. A degradation rate of 44.0% was measured during the prolonged time of 307 h. The relatively low durability of the tested single cell stack was found to be the evaporation of Ag-mesh at the current corrector.

Techno-economic Analysis of Power To Gas (P2G) Process for the Development of Optimum Business Model: Part 2 Methane to Electricity Production Pathway

  • Partho Sarothi Roy;Young Don Yoo;Suhyun Kim;Chan Seung Park
    • Clean Technology
    • /
    • v.29 no.1
    • /
    • pp.53-58
    • /
    • 2023
  • This study shows the summary of the economic performance of excess electricity conversion to hydrogen as well as methane and returned conversion to electricity using a fuel cell. The methane production process has been examined in a previous study. Here, this study focuses on the conversion of methane to electricity. As a part of this study, capital expenditure (CAPEX) is estimated under various sized plants (0.3, 3, 9, and 30 MW). The study shows a method for economic optimization of electricity generation using a fuel cell. The CAPEX and operating expenditure (OPEX) as well as the feed cost are used to calculate the discounted cash flow. Then the levelized cost of returned electricity (LCORE) is estimated from the discounted cash flow. This study found the LCORE value was ¢10.2/kWh electricity when a 9 MW electricity generating fuel cell was used. A methane production plant size of 1,500 Nm3/hr, a methane production cost of $11.47/mcf, a storage cost of $1/mcf, and a fuel cell efficiency of 54% were used as a baseline. A sensitivity analysis was performed by varying the storage cost, fuel cell efficiency, and excess electricity cost by ±20%, and fuel cell efficiency was found as the most dominating parameter in terms of the LCORE sensitivity. Therefore, for the best cost-performance, fuel cell manufacturing and efficiency need to be carefully evaluated. This study provides a general guideline for cost performance comparison with LCORE.

Hydrodesulfurization of Diesel for Molten Carbonate Fuel Cell Applications (용융탄산염 연료전지용 디젤의 수소첨가탈황)

  • Kim, Minsoo;Kim, Hyun Koo;Jang, Seong-Cheol;Kim, Yeongcheon;Choi, Sun Hee;Yoon, Sung Pil;Han, Jonghee;Nam, Suk Woo;Choi, Dae-Ki;Chul, Hyung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.1
    • /
    • pp.21-27
    • /
    • 2015
  • Hydrogen production from commercial diesel fuels is an attactive option for energy generation purpose due to the low cost and good availability of diesel fuels. However, in order to utilize commercial diesel fuels, the sulfur contents must be removed down to approximately 0.1 ppm level to protect the fuel cell catalysts from poisoning. Commercial catalysts $CoMo/Al_2O_3$ and $NiMo/Al_2O_3$ were tested for HDS (Hydrodesulfurization) of model diesel and commercial diesel. The experimental conditions were $250-400^{\circ}C$ and LHSV (Liquid Hourly Space Velocity) $0.27-2.12hr^{-1}$. $NiMo/Al_2O_3$ was found to be more effective than $CoMo/Al_2O_3$ in removing sulfur from model diesel. Based on the experimental results of model diesel, commercial diesel fuel purchased from a local petrol station was tested for HDS using $NiMo/Al_2O_3$. The GC-SCD (Gas Chromatography Sulfur Chemiluminescence Detector) results showed that the DMDBT (Dimethyldibenzothiophene) derivatives were fully removed from the commercial diesel fuel proving that HDS with $NiMo/Al_2O_3$ is technically feasible for industrial applications.

Performance Evaluation of Hydrogen Generation System using NaBH4 Hydrolysis for 200 W Fuel Cell Powered UAV (200 W급 연료전지 무인기를 위한 NaBH4 가수분해용 수소발생시스템의 성능평가)

  • Oh, Taek-Hyun;Kwon, Sejin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.4
    • /
    • pp.296-303
    • /
    • 2015
  • The concentration of solute in a $NaBH_4$ solution is limited due to the low solubility of $NaBO_2$. The performance of a hydrogen generation system was evaluated using various concentrations of $NaBH_4$ solution. First, a self-hydrolysis test and a hydrogen generation test for 30 min were performed. The composition of $NaBH_4$ solution was selected to be 1 wt% NaOH + 25 wt% $NaBH_4$+74wt% $H_2O$ by considering the amount of hydrogen loss, stability of hydrogen generation, $NaBO_2$ precipitation, conversion efficiency, and the purpose of its application. A hydrogen generation system for a 200 W fuel cell was evaluated for 3 h. Although hydrogen generation rate decreased with time due to $NaBO_2$ precipitation, hydrogen was produced for 3 h (conversion efficiency: 87.4%). The energy density of the 200 W fuel cell system was 263 Wh/kg. A small unmanned aerial vehicle with this fuel cell system can achieve 1.5 times longer flight time than one flying on batteries.