• Title/Summary/Keyword: Fuel atomization

Search Result 522, Processing Time 0.024 seconds

Atomization Effects of Diesel on Autothermal Reforming Reaction (디젤연료의 미립화에 따른 자열개질 반응특성에 관한 연구)

  • Bae, Joong-Myeon;Yoon, Sang-Ho;Kang, In-Yong
    • Journal of ILASS-Korea
    • /
    • v.11 no.4
    • /
    • pp.234-243
    • /
    • 2006
  • Diesel autothermal reforming (ATR) is a chemical process to produce hydrogen for fuel cell applications. Several previous studies were carried out to identify technical issues in diesel reforming. It is hard to vaporize diesel due to its high boiling points. Liquid droplets of diesel result in inhomogeneous fuel mixing with other reactants such as $O_2\;and\;H_2O$, which leads to reduce the reforming efficiency and make undesired coke in reactor. To solve the fuel delivery issue, we applied an ultrasonic device as a fuel injection system. Ultrasonic injector (UI) remarkably enhanced the reforming efficiency. This paper will present the reforming results using UI. And we will discuss about atomization effects of diesel on autothermal reforming reaction.

  • PDF

An Experimental Study on the Atomization Characteristics of Electrohydrodynamic for Ethanol($C_2H_5OH$) Fuel (에탄올($C_2H_5OH$) 연료의 전기수력학적 미립화 특성에 관한 실험적 연구)

  • Sung, K.A.
    • Journal of ILASS-Korea
    • /
    • v.14 no.2
    • /
    • pp.65-70
    • /
    • 2009
  • An experimental study was performed to explore the atomization characteristics as the drop formation and the liquid breakup of an ethanol fuel using an electrohydrodynamic atomizer. A developed electrohydrodynamic atomizer controlled by a high AC power, a variable frequency, and a liquid feeding was used for the experiments. The test had been considered a disperse atomization processing at $450{\sim}4200V$ applied power, $200{\sim}400\;Hz$ frequency, and $1{\sim}3\;ml/min$ ethanol feeding to achieve an uniformed droplet formation. The goal of the research was to investigate the possibility of the liquid breakup for an ethanol fuel in an electrohydrodynamic atomizer. The results showed that the mean droplet radius decreased as the applied voltage increased or as the applied AC frequency increased. The whipping motion had been grown at the specified voltages due to the applied frequency.

  • PDF

A Study on the Fuel Spray and Atomization Characteristics of MPI Gasoline Injector (MPI 가솔린 기관용 인젝터의 분무 거동 및 미립화 특성에 관한 연구)

  • Seo, Y.H.;Lee, C.S.;Lee, K.H.
    • Journal of ILASS-Korea
    • /
    • v.1 no.4
    • /
    • pp.32-39
    • /
    • 1996
  • Fuel spray in the MPI gasoline injector and its atomization characteristics are investigated with both macroscopic and microscopic visualization systems. The Bosch injector is inserted into an air-assist spray adapter which is designed to be fabricated and assembled easily. particle motion analysis system is used to measure the SMD of injector, where the assistant air pressure is varied from 0.0 to 1.5bar with fuel pressure 2.8bar. Droplet size decreased with higher air pressure and fine fuel spray with below $60{\mu}m$ of SMD is acquired at the assistant air pressure over 0.5bar.

  • PDF

Investigation on Injection Rate and Microscopic Spray Characteristics of Fine Bubble Diesel Fuel (미세버블 디젤 연료의 분사율과 미시적 분무특성에 대한 연구)

  • Chen, Hai-Lun;Lee, Seungwoo;Kim, Kihyun
    • Journal of ILASS-Korea
    • /
    • v.25 no.1
    • /
    • pp.15-20
    • /
    • 2020
  • This study aims to investigate injection rate and microscopic spray characteristics of diesel fuel containing fine air bubble (FBD). fine bubble was generated by cavitation theory using bubble generator. Fuel spray was injected into constant volume chamber and visualized by high speed camera. The injection rate data was acquired with bosch tube method. Injection rate of finebubble diesel was very similar with that of diesel. It showed slightly faster injection start by 5 ㎲ attributed to the low viscosity characteristics. In microscopic spray visualization, fine bubble diesel spray showed unsymmetric spray shape compared with diesel spray. It also showed very vigorous spray atomization performance during initial spray development. Improved atomization was also attributed to the low viscosity and surface tension of finebubble diesel fuel.

Fuel Spray Characteristics of Dimethyl Ether (DME 연료의 분무 특성에 관한 연구)

  • Lee, Sang Hoon;Chon, Mun Soo
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.2
    • /
    • pp.51-56
    • /
    • 2013
  • This paper describes the atomization characteristics, as well as the velocity and size distribution, of DME spray based on common-rail injection system. To analyze the possibility of using DME fuel as an alternative fuel of diesel, spray atomization characteristics were investigated. For this investigation, two-dimensional phase Doppler analyzer system was used to obtain droplet size and velocity distribution simultaneously. Velocity and droplet size measurements were performed at various injection pressures. Results showed that increasing pressure from 25MPa to 50MPa leads to higher spray droplet velocities and smaller droplet diameter but injection pressure above 40MPa, no signifiant reduction was observed. With the droplet velocity and SMD comparison between diesel and DME fuel, it can be observed that DME has smaller SMD and droplet velocity due to its low surface tension.

  • PDF

Modeling of Atomization Under Flash Boiling Conditions

  • Zeng, Yangbing;Lee, Chia-Fon
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.1
    • /
    • pp.44-51
    • /
    • 2002
  • This paper presents an atomization model for sprays under flash boiling conditions. The atomization is represented by the secondary breakup of a bubble/droplet system, and the breakup is considered as the results of two competing mechanisms, aerodynamic force and bubble growth. The model was applied to predict the atomization of a hollow-cone spray from pintle injector under flash boiling conditions. In the regimes this study considered, sprays are atomized by bubble growth, which produces smaller SMD#s than aerodynamic forces alone. With decreasing ambient pressures, the spray thickness, fuel vaporization rate and vapor radial penetration increases, and the drop size decreases. With increasing the fuel and ambient temperatures to some extent, the effect of flash boiling and air entrainment completely change the spray pattern.

  • PDF

Effect of Nozzle Hole Number on Atomization Characteristics of DME Fuel Spray using High Pressure Injector (고압 인젝터의 노즐 홀 수가 DME 연료분무의 미립화 특성에 미치는 영향)

  • Lee, Jongtae;Lee, Sanghoon;Chon, Mun Soo
    • Journal of ILASS-Korea
    • /
    • v.19 no.4
    • /
    • pp.216-220
    • /
    • 2014
  • This paper presents effect of nozzle hole number on atomization characteristic of DME fuel spray using three different type of injector having the hole number of 6, 7 and 8. For this study, PDPA(phase Doppler particle analyzer) experiment was performed in terms of $T_{ASOE}$ under various injection pressure. To compare general trend of atomization characteristic, the law data were ensemble averaged based on $T_{eng}$ of 0.2 ms. Results showed that the droplet diameter in terms of SMD(Sauter Mean Diameter) was reduced as increase in injection pressure. Increasing the number of hole lead to reduce in droplet diameter, but no significant reduction in diameter was observed between hole number of 7 and that of 8. In addition, increasing the number of hole resulted in decrease in droplet velocity which is considered as the effect of reduction in spray momentum due to decreasing of fuel quantity per each hole.

Spray Behavior and Atomization Characteristics of Air-Assist Type Gasoline Fuel Injector (공기보조형 가솔린 연료 분사기의 분무거동 및 미립화 특성)

  • 노병준;강신재;김원태
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.187-197
    • /
    • 1998
  • To investigate the spray behavior and atomization characteristics using an air-assist injector, spray visualization and PDPA measurements were carried out under the various assisted air pressures and the fixed fuel pressure. The air assist pintle type injector employed in this study is consisted of the air assist adaptor and an injector housing using the gasoline fuel and air as the working fluids. As results, increasing pressure of assisted air, the growth of spray tip penetration is gradually reduced at the end of spray and spray angle is steadily increased at the main spray region except from the early spray. For the air assist pressure of 25㎪ in a spray downstream, it is doncluded that droplet size distribution shows the peak of 10${\mu}{\textrm}{m}$ and most of the droplet sizes are less than 50${\mu}{\textrm}{m}$. Also, the air-assist injector extremely improves fuel atomization in order to produce much finer droplets, it shows that approximately, in this case, 50% decreade of SMD than without air assit.

  • PDF

PRESSURE MODULAION ON MICRO-MACHINED PORT FUEL INJECTOR PERFORMANCE

  • Kim, H.;Im, K.S.;Lai, M.C.
    • International Journal of Automotive Technology
    • /
    • v.5 no.1
    • /
    • pp.9-16
    • /
    • 2004
  • An experimental study was carried out to characterize the spray atomization process of micro-machined port fuel injectors with a piezoelectric atomization device, which can generate pressure pulsations through vibration of a piezoelectric transducer. In this study, several types of micro-machined arrays such as 30∼200-microns of hole arrays were tested. Both a dual-stream and a central-port injectors with micro-machined arrays were tested and compared with normal port fuel injectors. The spray visualization was conducted to characterize overall spray structure and phase Doppler particle analyzer (PDPA) system was used to quantify the droplet size and velocity. In addition, the pressure history was recorded by using digitized signal from pressure transducer. The results showed that modulation is effective to the spray atomization for tested injectors and atomization performance depends on injector design factors, orifice sizes, and frequency and power of the modulator. A number of resonance frequencies of the modulator was modified by injector parameters and temperature. In addition, our results suggested that design of sufficient space among holes is critical to avoid droplet coalescence in the multi-hole micro-machined injectors.