• Title/Summary/Keyword: Fuel Tank System

Search Result 205, Processing Time 0.024 seconds

Transient Response Analysis of Cylindrical Liquid Fuel-Storage Tank subject to Initial Acceleration (원통형 액체 연료탱크의 초기 가속에 따른 과도응답 해석)

  • Lee, S.Y.;Joo, Y.S.;Kim, K.W.;Cho, J.R.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.475-480
    • /
    • 2000
  • The transient dynamic-response analysis of fuel-storage tanks of flying vehicles accelerating in the vertical direction is achieved with finite element method. A fuel-storage tank is a representative example of the fluid-structure interaction problem, in which structure and fluid media interact strongly. For the accurate analysis of this complicated fluid-structure system, we employed ALE(arbitrary Lagrangian-Eulerian) coupling method. Two types of fuel-storage tanks, one with two baffles and the other without baffle, are considered to examine the effect of baffles. The fuel-storage tank with baffles shows more uniform hydrodynamic pressure distribution, resulting effective stress in structural region and faster convergence from transient to steady states. MSC/Dytran, a commercial FEM software for the 3D coupled dynamic analysis, is used for this analysis.

  • PDF

A study on the characteristics of vibration in fuel pump system (연료공급 장치의 진동 특성에 대한 연구)

  • Kwon, Joseph;Kim, Chan-Mook;Kang, Tae-Won;Sa, Jong-Sung;Kang, Tae-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.494-500
    • /
    • 2007
  • The comfort and quietness of vehicle has been improved greatly due to the development of technology in automobile industry. It is driven by reduction on the level of vibration and noise in powertrain system. However, the hidden problems in automobile parts become noticeable since the vehicle has been better in overall performance. One of them is related to the fuel pump system. Therefore, this study is focused on investigating the characteristics of fuel pump and fuel tank first, and then comparing the data before and after installation of fuel pump system in a testing vehicle. Additionally, the measured data will be analyzed to identify the problems and find a solution to improve the level of noise and vibration in fuel pump system.

  • PDF

Development of a measurement device of water level at the bottom of fuel tanks using an optical cable sensor. (대용량 탱크에서 물과 유류의 이중 액면 높이 계측용 센서 개발)

  • 김진만;김희식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.471-474
    • /
    • 2002
  • A fuel tank contains water at the bottom under the fuel. The water comes from humidity by temperature change of inside and outside of tank. So it is necessary to measure both level to check precise amount of oil. But measuring instrument for level of water and fuel is not available yet. Since the fuel is inflammable, the sensor system must not include any electric circuits in the fuel tank. Optical cable sensor can satisfy this non-explosive condition. The displacement of a float changing by water level makes bending curvature of optical cable different. As the float rise up, the optical cable is bent more and the light signal in the cable decreases. The reduction of light signal is detected and it is converted into the change of water level. The output signal from a photo diode shows the proportional relation of water level. The increase of sensor voltage as a unit of ㎷ follows the level position of the float that is located between water and gasoline in the tank.

  • PDF

Evaluation of Structural Integrity of Aircraft External Fuel Tank for Separation Loads (분리하중에 대한 항공기용 외부연료탱크 구조 건전성 평가)

  • Hyun-gi Kim;Sungchan Kim;Min-su Park;Su-hong An
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.1
    • /
    • pp.64-71
    • /
    • 2024
  • The external fuel tank of an aircraft is a main component that can increase the cruising range of the aircraft. It must be able to be stably separated from the pylon in an emergency situation. At this time, a separation load is applied to the fin and the pivot of the external fuel tank. To stably separate the external fuel tank, the structural soundness of the fin and the pivot must be confirmed. In this study, structural tests were conducted to verify the structural integrity of the external fuel tank pin and pivot when the external fuel tank was separated from the aircraft. Results are then presented. In this paper, a test configuration diagram consisting of the hydraulic and load control equipment, data acquisition system, and pneumatic supply unit used in the structural test was explained. Test installation and test load application plan for each test condition were provided. As results of the structural test, it was found that test load and internal pressure of the test specimen were properly controlled within the allowable range in each test. It was confirmed that serious structural defects in the test specimen did not occur under required load conditions. In conclusion, through structural test for design limit load and design ultimate load, it was proven that the fin and pivot of the external fuel tank for aircraft covered in this study had sufficient structural strength.

DNC Application of Car Fuel Tank Die Working (자동차 연료탱크 금형가공을 위한 DNC 활용)

  • 이종선
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.269-274
    • /
    • 1999
  • This paper aims to DNC application of car fuel tank die working. DNC system is consist of CAD, CAM software and CNC milling machine. CAM software is purpose to G-code generation for CNC programming. Then CAM software and CNC milling machine are connect to RS-232-C cable for networking.

  • PDF

On the Design and Test for the 150 Gallon Composite External Fuel Tank (150갤런 복합재 외부연료탱크 설계 및 시험평가)

  • Chang, Inki;Kim, Changyoung
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.4
    • /
    • pp.22-27
    • /
    • 2007
  • The 150 gal Ion EFT(External Fuel Tank) used to enlarge the aircraft operation range was adopted an import equipment in T-50 FSD phase. But in Production phase the EFT was planed to develop for the stable ILS(Integrated Logistics Support) and technical ability improvement by using the composite materials. The design for configuration and fuel system is intended to maintain compatibility with aircraft systems and the development test is performed on component, assembly and aircraft. This study is conducted to provide the technology of design and test for the 150 gallon composite EFT in LRU level. The test results show that the composite EFT is satisfied with structural, functional and environment requirements which are described in specification.

  • PDF

Study on Structural Design and Analysis of Fuel System for Aircraft Auxiliary Fuel Tank (항공기 보조연료탱크 연료시스템 구조 설계 및 해석)

  • Choi, Won;Park, Hyunbum
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.4
    • /
    • pp.60-65
    • /
    • 2019
  • This study did a structural design of a fuel system of auxiliary fuel tank applied to aircraft then analyzed it. The safety of the structural design result was investigated. Aluminum alloy metal structure was applied to the fuel system structure. The structural analysis was conducted using commercial finite element software. The design requirement was maximum accelerate condition of the structure. Therefore, structural design was done considering the maximum accelerate condition.

Consideration on Flash Fire of Fuel Tank by Plate and Projectile Impacts (외부위협체의 충돌에 의한 연료탱크의 순간화재 발생가능성에 대한 고찰)

  • Lee, Eun Min;Park, Ju Young;Lee, Hae Pyeong;Lee, Chang Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.62-67
    • /
    • 2014
  • This study was performed to analyze the vulnerability of the situation in which combat system is shot by external projectile impacts. In developing combat system, it is vital to consider the survivability as well as its mission capability because it is directly connected with loss of lives. Especially, when the parts which are susceptible to fire are shot under battle situation, the system is exposed to the dangerousness and the situation when the parts such as fuel tanks are impacted by external projectile impacts can lead to flash fire as a result of the leakage of fuel. Therefore, in this study the possibility of flash fire was calculated by analyzing a variety of variables supposing that fuel tank in the combat system is shot. The aim of this study is to suggest effective methods in the basic steps when combat system is designed.

The Evaluation of Fire Reliability for the High Pressure Hydrogen Storage System of Fuel Cell Vehicle (I) (연료전지자동차의 고압수소저장시스템 국부화재 신뢰성 평가 (I))

  • Kim, Sang-Hyun;Choi, Young-Min;Hang, Ki-Ho;Shim, Ji-Hyun;Hang, In-Cheol;Lim, Tae-Won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.4
    • /
    • pp.520-526
    • /
    • 2011
  • In recent years, it is very important that hydrogen storage system is safe for user in any circumstances in case of crash and fire. Because the hydrogen vehicle usually carry high pressurized cylinders, it is necessary to do safety design for fire. The Global Technical Regulation (GTR) has been enacted for localized and engulfing fire test. High pressure hydrogen storage system of fuel cell electrical vehicles are equipped with Thermal Pressure Relief Device (TPRD) installed in pressured tank cylinder to prevent the explosion of the tank during a fire. TPRDs are safety devices that perceive a fire and release gas in the pressure tank cylinder before it is exploded. In this paper, we observed the localized and engulfing behavior of tank safety, regarding the difference of size and types of the tanks in accordance with GTR.

Dynamic Response Analysis of Baffled Fuel-Storage Tank in Turnaround Motion (선회운동에 따른 배플형 연료탱크의 동응답 해석)

  • 조진래;홍상일;김민정
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.77-86
    • /
    • 2003
  • Dynamic response of baffled fuel-storage tank in turnaround motion is simulated using the ALE finite element method. Fuel-storage tank undergoes abrupt impact load caused by inertia force of internal fuel in turnaround motion. Also, large dynamic force and moment caused by this load influence structural stability and control system. In this paper, ring-type baffles are adopted to suppress the dynamic influence. Through the parametric analysis with respect to the baffle number and location, the effects of baffle on the dynamic response of baffled fuel-storage tank is analyzed. The ALE finite element method is adopted for the accurate and effective simulation of the hydrodynamic interaction between fluid and structure.