• 제목/요약/키워드: Fuel Simulation

검색결과 1,749건 처리시간 0.02초

박용 대형 저속 디젤기관 연료분사계통의 시뮬레이션에 관한 연구 (A Study on the Simulation of the Fuel Injection System in a Large Low-speed marine Diesel Engine)

  • 이창식
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2000년도 춘계학술대회 논문집(Proceeding of the KOSME 2000 Spring Annual Meeting)
    • /
    • pp.36-44
    • /
    • 2000
  • In his study the simulation was carried out by simplifing and modeling dividing into fuel injectioin pump high pressure pipe and fuel injection valve in the fuel injection system of a low speed marine diesel engine. A computer simulation model was developed using the method of characteristics to analyze the unsteady flow in the fuel injection system considering cavitation and variation of fuel density and bulk modulus. Comparison was commenced between the calculated data and experimental data of pressure and injection quantity at the high pressure distributor in fuel injection system for the training ship "M/V hanara" the effects of the high pressure pipe length diameter plunger diameter nozzle openning pressure were also investigated by simulating results.g results.

  • PDF

박용 대형 저속 디젤기관 연료분사계통의 시뮬레이션에 관한 연구 (A Study on a Simulation of a Fuel Injection System in a Large Low-Speed Marine Diesel Engines)

  • 강정석;이창식;조권회;최재성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권6호
    • /
    • pp.43-52
    • /
    • 2000
  • In this study, a simulation program was developed, which could simulate a fuel injection system for low-speed marine diesel engine. The fuel injection system was divided into fuel injection pump, high pressure pipe and fuel injection valve. The unsteady flow in the high pressure injection pipe was analyzed by the method of characteristics, considering cavitation and variation of fuel density and bulk modulus. It was confirmed that the simulation results were good agree with experimental results of injection pressure and quantity at the high pressure distributor in fuel injection system for the training ship "M/V Hannara". And the effects of the atomizer hole diameter, maximum needle lift, plunger diameter and nozzle opening pressure were also investigated with simulating results.g results.

  • PDF

A Study of Vehicle Fuel Consumption Simulation using VHDL-AMS Multi-domain Simulation

  • Abe, Takashi;Takakura, Shikoh;Higuchi, Tsuyoshi
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권2호
    • /
    • pp.232-238
    • /
    • 2013
  • The vehicle system is a multi-domain system that requires many branches of science and engineering. Therefore the development of the vehicle system requires the use of design methodologies that utilize simulations, which have grown increasingly sophisticated in recent years. Our research group proposed a simulation modeling method based on the VHDL-AMS language. This paper describes how VHDL-AMS is used to model of vehicle fuel consumption simulation. The fuel consumption is shown using proposed simulation model on the Japanese 10-15 mode. We examine the influence of the vehicle system with electrical load and hill climb resistance in the vehicle running resistance.

연료탱크의 낙하 시험 시뮬레이션 (Drop Test Simulation of a Fuel Tank)

  • 박선영;배재성;황재혁;이수용;정태경
    • 한국항공우주학회지
    • /
    • 제36권10호
    • /
    • pp.1032-1037
    • /
    • 2008
  • 항공기의 기체 생존성에 있어서 연료탱크는 중요한 부분이다. 회전익 항공기의 연료탱크는 자기 밀폐성과 내충돌성의 기능을 필요로 한다. 이에 따라 고기능유연연료탱크를 필요로한다. 이 논문에서는 상용 소프트웨어인 MSC.DYTRAN을 이용하여 연료탱크의 낙하시험을 시뮬레이션 하였다. 연료탱크 낙하 시험 시 시험 큐브의 파손 없이 내충돌성 요구조건을 만족하는지 알아보았다.

천연가스를 파이럿오일과 이원공급하는 직접분사식 2행정 디이젤기관의 시뮬레이션 (Simulation of Natural Gas Injected Dual-Fuel DI 2-Stroke Diesel Engine)

  • 최인수
    • 한국자동차공학회논문집
    • /
    • 제3권3호
    • /
    • pp.9-18
    • /
    • 1995
  • The substitution of conventional fuel oil by alternative fuels is of immense interest due to liquid oil shortage and requirements of emission control standard. Among the alternative fuels, natural gas may be the most rational fuel, because of its widespread resource and clean est burning. Meanwhile, engine simulation is of great importance in engine development. Hence a zero-dimensional combustion model was developed for dual-fuel system. Natural gas was injected directly into the cylinder and small amount of distillate was used to provide the ignition kernel for natural gas burning. The intake air and exhaust gas flow was modeled by filling and emptying method. Although the single zone approach has an inherent limitation, the model showed promise as a predictive tool for engine performance. Its simulation was also made to see how the engine performance was influenced by the fuel injection timings and amount of each fuel.

  • PDF

디젤엔진용 고압분사 유닛인젝터의 성능예측을 위한 사이클 시뮬레이션 (Cycle Simulation for the Performance Prediction of a High Pressure Unit Injection System of a Diesel Engine)

  • 김철호
    • 한국자동차공학회논문집
    • /
    • 제9권1호
    • /
    • pp.63-74
    • /
    • 2001
  • In this study, a cycle simulation program of a Unit-Injection(UI) system was developed to estimate the injection performance of newly designed injection system. A fundamental theory of the simulation program is based on the conservation law of mass. Loss of fuel mass in the system due to leakage, compressibility effect of the liquid fuel and friction loss in the control volume was considered in the algorithm f the program. For the evaluation of the simulation program developed, the experimental result which was offered by the Technical Research Center of Doowon Precision Industry Co. was incorporated. Two main parameters; the maximum pressure in the plunger chamber and total fuel mass(kg) injected into the engine cylinder per cycle, were measured and compared with the simulation results. It was found that the maximum error rate of the simulation result to the experimental output was less than 3% in the rated rotational speed (rpm) range of the plunger cam.

  • PDF

EXPLORING THE FUEL ECONOMY POTENTIAL OF ISG HYBRID ELECTRIC VEHICLES THROUGH DYNAMIC PROGRAMMING

  • Ao, G.Q.;Qiang, J.X.;Zhong, H.;Yang, L.;Zhuo, B.
    • International Journal of Automotive Technology
    • /
    • 제8권6호
    • /
    • pp.781-790
    • /
    • 2007
  • Hybrid electric vehicles(HEV) combined with more than one power sources have great potential to improve fuel economy and reduce pollutant emissions. The Integrated Starter Generator(ISG) HEV researched in this paper is a two energy sources vehicle, with a conventional internal combustion engine(ICE) and an energy storage system(batteries). In order to investigate the potential of diesel engine hybrid electric vehicles in fuel economy improvement and emissions reduction, a Dynamic Programming(DP) based supervisory controller is developed to allocate the power requirement between ICE and batteries with the objective of minimizing a weighted cost function over given drive cycles. A fuel-economy-only case and a fuel & emissions case can be achieved by changing specific weighting factors. The simulation results of the fuel-economy-only case show that there is a 45.1% fuel saving potential for this ISG HEV compared to a conventional transit bus. The test results present a 39.6% improvement in fuel economy which validates the simulation results. Compared to the fuel-economy-only case, the fuel & emissions case further reduces the pollutant emissions at a cost of 3.2% and 4.5% of fuel consumption with respect to the simulation and test result respectively.

시뮬레이션 기반 연료전지/2차전지 하이브리드 미니버스의 설계 및 성능 평가 (Design and Performance Evaluation for a Fuel Cell/Battery Hybrid Mini-Bus Based on a Simulation)

  • 김민진;공낙원;이원용;김창수
    • 한국수소및신에너지학회논문집
    • /
    • 제18권1호
    • /
    • pp.60-66
    • /
    • 2007
  • In terms of the vehicle efficiency, a fuel cell hybrid system has advantages compared to a conventional internal combustion engine and a fuel cell alone-powered system. The efficiency of the fuel cell hybrid vehicle mainly depends on the maximum power of the fuel cell and therefore it is important to decide the design value of the fuel cell maximum power. In this paper, to estimate the performance of the fuel cell hybrid mini-bus in the design phase the simulator based on the models for the fuel cell stack, the electric battery, the fuel cell balance of plant, the controller, and the vehicle itself is proposed. Additionally, the hybrid mini-bus efficiencies with several different fuel cell powers are simulated for a city driving schedule and are compared on another. Consequently, the proposed simulation scheme is useful to determine the best design value of the fuel cell hybrid vehicles.

CONTROL STRATEGY OF ELECTRIC COOLANT PUMPS FOR FUEL ECONOMY IMPROVEMENT

  • CHO H.;JUNG D.;ASSANIS D. N.
    • International Journal of Automotive Technology
    • /
    • 제6권3호
    • /
    • pp.269-275
    • /
    • 2005
  • The engine cooling system for a medium duty V6, 4.5 L diesel engine was modeled with a commercial code, GT-Cool in order to investigate the effect of controllable electric pump on the cooling performance and the fuel economy. The simulation results of the cooling system model with mechanical coolant pump were validated with experimental data. Two different types of electric pumps were implemented into the cooling system model and PID control for electric pump operation was incorporated into the simulation study. Based on the simulation result with electric pump, conventional thermostat hysteresis was modified to reduce pump operation for additional improvement of fuel economy, and then the benefit of electric pumps with modified thermostat hysteresis on fuel economy was demonstrated with the simulation. The predicted result indicates that the cooling system with electric pump and modified thermostat hysteresis can reduce pump power consumption by more than $99\%$ during the FTP 74 driving cycle.

고속버스 연비개선 예측에 관한 연구 (A Prediction Study for Fuel Economy Development in an Express Bus)

  • 류명석
    • 한국자동차공학회논문집
    • /
    • 제14권5호
    • /
    • pp.181-185
    • /
    • 2006
  • A study to get better vehicle fuel economy is described based on an express bus. The approach is based on using a commercial software vehicle simulation to identify the relative efficiency of each of the vehicle systems, such as the engine hardware, engine software calibration, transmission, cooling system and ancillary drives. The simulation-based approach offers a detailed understanding of which vehicle systems are underperforming and by how much the vehicle fuel economy can be improved if those systems are brought up to best-in-class performance. In this way, the optimum vehicle fuel economy can be provided to the vehicle customer. A further benefit is that the simulation requires only a minimum of vehicle testing for initial validation, with all subsequent field test cycles performed in software, thereby reducing development time and cost for the manufacturer.