• 제목/요약/키워드: Fuel Quantity

검색결과 301건 처리시간 0.022초

가스사고의 통계적 분석을 통한 사고 예방 정책 마련을 위한 기초 연구 (A Basic Research for Taking Precautionary Measures against Gas Accidents)

  • 김정훈;정지연;임시영
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2009년도 춘계학술대회
    • /
    • pp.193-202
    • /
    • 2009
  • The quantity of the fuel gas consumed are trending upwards because it can be easily delivered but isn't deteriorated and doesn't have any environmental pollution. Though there are many advantages to use the fuel gas, because of its explosiveness and combustibility, it can be hesitate to consume more gas. So paying more attentions to prevent the fuel gas accidents is required. In this paper, we examine the present situation data about the fuel gas accidents and analyze those statistically using ANOVA. we confirm that there is an acceptable difference between the mean values of accidents classified by the kind of gas, the cause, the type and the place but isn't by month. It is expected that our result can be applied as preliminary data when mapping out a strategy for preventing the fuel gas accidents.

  • PDF

촉매량 변화에 따른 직접 메탄올 연료전지의 성능 특성에 관한 연구 (A Study on the Performance Characteristics of Direct Methanol Fuel Cell with Changing of Catalyst Loading)

  • 서상헌;이창식
    • 한국수소및신에너지학회논문집
    • /
    • 제19권6호
    • /
    • pp.467-473
    • /
    • 2008
  • This study is to investigate the influence of catalyst loading quantity on the direct methanol fuel cell (DMFC) performance. In this paper, Pt-Ru and Pt-black loading as the catalyst were varied from 1 to $4mg/cm^2$ at the anode and cathode, respectively. The experiment was conducted with single fuel cell consisted of $5cm^2$ effective electrode area, serpentine type flow pattern and Nafion 117 membrane. Also, AC impedance and methanol crossover current were measured to investigate the performance loss precisely. As a result, the performance of fuel cell was significantly increased with the increase of cathode catalyst loading. However, the performance did not increase further above a certain Pt-Ru catalyst loading as the increase of anode catalyst loading.

2행정 디젤엔진의 소기압력이 사이클변동에 미치는 영향에 관한 연구 (A Study on the Effect of Cycle Variation on Scavenging pressure in 2-Stroke Diesel Engine)

  • 윤창식;김치원;김기복
    • 한국산업융합학회 논문집
    • /
    • 제19권3호
    • /
    • pp.154-159
    • /
    • 2016
  • Recently it has been focused that the automobile engine has developed in a strong upward tendency for the use of the high viscosity and poorer quality fuels in achieving the high performance, fuel economy, and emission reduction. Therefore it is not easy to solve the problems between low specific fuel consumption, and exhaust emission control at automotive engine In this study, it is designed and used the test bed which is installed with fuel injector controller. In addition to equipped engine using CRDI by controlling the injection timing with modulator, it has tested and analyzed the engine cycle variation characteristics, as it is varied that they are the operating parameters: fuel injected quantity, injection timing, engine speed and scavenging pressure.

PC-ECU를 이용한 SI 기관의 비정상상태 정밀공연비 제어 (Precise Air-Fuel Ratio Control on Transient Conditions with the PC-ECU in SI Engine)

  • 윤수한
    • 한국분무공학회지
    • /
    • 제5권3호
    • /
    • pp.9-16
    • /
    • 2000
  • In a SI engine, three-way catalyst converter has the best efficiency when A/F ratio is near the stoichiometry. The feedback control using oxygen sensors in the commercial engine has limits caused by the system delays. So it is necessary to control fuel quantity in accordance with intake air amount in order to reduce exhaust emission and improve the specific fuel consumption. Precise A/F ratio control requires measurement of air amount with respect to the cylinder and injection fuel according to the air amount In this paper, we applied nonlinear fuel injection model and developed the algorithm of A/F ratio control. This algorithm includes the methods of measurement of transient air mass flowing into each cylinder, of calculation of injection pulse width for measured air mass, and the method of feedback and engine control by using lambda sensor. Also we developed control program for IBM-PC by using C++ Builder, and tested it in the commercial engine.

  • PDF

디젤 분사 특성이 Biogas-디젤 혼소엔진 성능에 미치는 영향 (Effect of Diesel Injection Characteristics on Biogas-Diesel Dual Fuel Engine Performance)

  • 이선엽;김영민;이장희
    • 한국분무공학회지
    • /
    • 제15권4호
    • /
    • pp.195-201
    • /
    • 2010
  • Due to its carbon-neutral nature, biogas generated from anaerobic digestion or fermentation of biodegradable wastes is one of the important renewable energy sources to reduce global warming. It is mainly composed of methane and various inert gases such as $CO_2$ and $N_2$, and the actual composition of biogas significantly varies depending on the origin of anaerobic digestion process. Therefore, in order to effectively utilize this fuel as an energy source for electricity, it is important to develop power generation engines which can successfully apply biogas with significant composition variations. In this study, efforts have been made to develop a diesel-biogas duel fuel engine as a way to achieve such a stable power generation. The effects of diesel fuel injection quantity and pressure on stable combustion and engine performance were investigated, and an impact of diesel fuel atomization was discussed. The engine test results show that there exists a 2 stage combustion which consists of diesel pilot fuel burning and premixed biogas/air mixture burning in dual fuel engine operation and optimum diesel injection parameters were suggested for biogases with various compositions and heating values.

HSDI 디젤 엔진 연비 저감 개발에 대한 연구 (Study of HSDI Diesel Engine Development for Low Fuel Consumption)

  • 전제록;유준;윤금중
    • 한국자동차공학회논문집
    • /
    • 제14권1호
    • /
    • pp.138-143
    • /
    • 2006
  • Modification of injector, oil ring tension reduction and oil pump rotor re-matching with optimization of relevant engine control parameters could drive fuel consumption reduction of HSDI diesel engine. A 5 holes injector was replaced with a 6 holes with smaller nozzle hole diameter and 1.5 k factor, and evaluated in a view of fuel economy and emission trade-offs. With introducing smaller nozzle hole diameter injector, PM(Particulate Matter) was drastically decreased for low engine load and low engine rpm. Modification of oil pump and oil ring was to reduce mechanical friction and be proved to better fuel economy. Optimization of engine operating conditions was a great help for the low fuel consumption. Influence of the engine operating parameters· including pilot quantity, pilot interval, air mass and main injection timing on fuel economy, smoke and NOx has been evaluated with 14 points extracted from NEDC(New European Driving Cycle) cycle. The fuel consumption was proved to $7\%$ improvement on an engine bench and $3.7\%$ with a vehicle.

스마트무인기의 연료량 측정장치에 관한 연구

  • 이창호;이수철
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제30회 춘계학술대회논문집
    • /
    • pp.233-235
    • /
    • 2008
  • 본 논문에서는 복잡한 형상을 갖는 여러개의 셀로 구성된 스마트무인기의 각 연료탱크에 대해 높이변화에 대한 체적변화를 분석하여 그 관계를 간단한 다항식으로 표현하였다. 그리고 탱크 셀 수보다 적은 수의 Probe를 이용하여 전체 연료량을 계측할 수 있는 효과적인 방법을 제시하였다. 이러한 결과는 측정 Probe의 계측 프로그램에 활용될 수 있다.

  • PDF

실도로 주행을 반영한 자동차 온실가스 배출 특성 연구 (The Study on Characteristic of Vehicle Greenhouse Gas Emission Applying Real Road Driving)

  • 이정기;용기중;김자륭;엄성복
    • 자동차안전학회지
    • /
    • 제10권3호
    • /
    • pp.45-54
    • /
    • 2018
  • Greenhouse gas is the big issue of the whole world. So foreign countries, EU, USA, Japan, China and Korea made the policy for reducing greenhouse gas. For calculation of reduction, it is necessary to know the quantity of current greenhouse emission per year in Korea. It is not reflected real driving condition for measuring the Fuel economy and greenhouse gas. The subject of this study is to figure out the characteristics which influence on greenhouse gas in real driving condition. And final goal is applying the policy greenhouse emission reduction.

폐기물 고형연료(RDF)의 순환유동층 연소 및 증기생산 (Circulting Fluidized Bed Combustion of Refuse Derived Fuel and Steam Production)

  • 선도원;배달희;조성호;이승용
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.613-616
    • /
    • 2007
  • A pilot scale circulating fluidized bed for refuse derived fuel is developed and constructed in order to demonstrate efficient and safe utilization of waste fuel. The capacity of the facility is 8 steam tons per hour with the steam quality of $450^{\circ}C$ and 38atm. The quantity and the quality of the produced steam is sufficient to produce 1MWe power capacity. The test operation proved the high combustion efficiency of 99% and up. The emissions of NOx, SOx in flue gas are below 100, 60ppm respectively with out any emission control. HCl emissions were above 400ppm at the combustor exit but reduced below 10ppm after scrubber.

  • PDF

가솔린 기관용 초음파 미립화장치의 타당성에 관한 연구 (I) - 연료 미립화를 중심으로 - (A Study on the Propriety of Ultrasonic Atomization Apparatus for the Gasoline Engine (l) - In the Case of the Atomization of Fual -)

  • 조규상
    • 오토저널
    • /
    • 제9권4호
    • /
    • pp.41-49
    • /
    • 1987
  • It is an experimental study to improve the characteristics of combustion and exhaust emission gas in the gasoline engine. These characteristics are influenced by the fuel droplet size. To improve these characteristics, we make the ultrasonic atomization apparatus, and compare with the commercial carburetor. The results obtained are as follows: 1. Maximum atomization quantity is obtained by the vibrator of resonancy frequency 1.65MHz in the ultrasonic atomization apparatus. 2. With ultrasonic atomization apparatus, more than 99% of atomization rate can be obtained regardless of intake air temperature, velocity, and air-fuel ratio. 3. Atomization rate of the commercial carburetor increases with the air-fuel ratio and intake air temperature. 4. Difference of atomization rate between the ultrasonic atomization apparatus and the commercial carburetor increases with decreasing air-fuel ratio. 5. Droplet size is about 1-5.mu.m at the ultrasonic atomization apparatus, and 80-150.mu.m at the commercial carburetor, which indicates the ultrasonic atomization apparatus is excellent in atomization.

  • PDF