• Title/Summary/Keyword: Fuel Qualification

Search Result 29, Processing Time 0.039 seconds

Slosh & Vibration Qualification Test for Fuel Tank of Rotorcraft (회전익기용 연료탱크 Slosh & Vibration 인증시험)

  • Kim, Hyun-Gi;Kim, Sung-Chan;Lee, Jong-Won;Hwang, In-Hee;Jang, Ki-Won;Jun, Pil-Sun;Jung, Tae-Kyung;Ha, Byung-Kun;Lee, Gui-Cheon;Shin, Dong-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.62-68
    • /
    • 2011
  • Rapid turning and accelerated movement of a rotorcraft leads to the slosh and vibration effect of fuel in the fuel tank. Due to the slosh load, the internal component of a fuel tank can be broken and fuel tank skin can be damaged. This is directly related to human survivability. Military specification(MIL-DTL-27422D) requires the verification of the stability of aircraft fuel tank and internal component against slosh & vibration load through the qualification test. This report shows the establishment of slosh and vibration test facility and KUH fuel tank qualification test result.

Development of the High Pressure Hydrogen Gas Cylinder(Type4) for Fuel Cell Vehicle;Design Qualification Tests (연료전지 차량용 고압기체수소 저장용기(Type4)개발;설계검증시험)

  • Yoo, Gye-Hyoung;Ju, Yong-Sun;Heo, Seok-Bong;Jeon, Sang-Jin;Kim, Jong-Lyul;Lee, Jong-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.193-196
    • /
    • 2007
  • We developed and tested the high pressure hydrogen gas cylinder(type4) for fuel cell vehicle. The working pressure is 350bar. We conducted material tests, production tests and design qualification tests on the developed cylinders according to modified NGV2-2000(hydrogen). The high pressure hydrogen gas cylinder met all the design qualification requirements of ANSI/CSA NGV2-2000 and acquired NGV2 certification from independent inspection agency.

  • PDF

Performance of U3Si-Al dispersion fuel at HANARO full-power condition

  • Chae, Heetaek;Lee, Choong Sung;Park, Jong Man;Kim, Heemoon;Kim, Yeon Soo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.899-906
    • /
    • 2018
  • The irradiation performance of $U_3Si$ dispersion fuel in an Al matrix, $U_3Si-Al$, under the Hi-Flux Advanced Neutron Application Reactor (HANARO) design full-power condition of 30 MW was tested for full-power qualification of the fuel. A test assembly was fabricated containing 18 fuel rods made with atomized $U_3Si$ powder manufactured at the Korea Atomic Energy Research Institute. The test assembly was irradiated for 188 full-power operation days in the HANARO subject to the normal fuel-loading scheme and achieved about 60 at% U-235 average burnup and 75 at% U-235 peak burnup. The maximum linear power of the test assembly was 98 kW/m. Nondestructive and destructive postirradiation examinations were conducted. The measured postirradiation examination data were compared with data from previous irradiations and the design criteria required for HANARO fuel. Consequently, it was concluded that in-pile performance was acceptable and fuel integrity was maintained, and the behavior satisfied the fuel design requirements.

Slosh & Vibration Qualification Test for Fuel tank of Rotorcraft (헬기용 연료탱크 Slosh & Vibration 인증시험)

  • Jung, Tae-Kyong;Jang, Ki-Won;Jun, Pil-Sun;Ha, Byoung-Geun;Kim, Sung-Chan;Kim, Hyun-Gi;Lee, Gui-Cheon;Shin, Dong-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.713-716
    • /
    • 2010
  • Slosh and vibration effects of fuel inside of fuel tank can be occurred due to the acceleration and flight speed during the rotorcraft flight. It can lead to the failure of internal fuel component and fuel tank skin can be damaged. This is directly related to human survival. Military specification (MIL-DTL-27422D) specifies that stability of aircraft fuel tank and internal component against slosh &vibration load shall be verified through the qualification test procedures. This report shows the establishment of slosh and vibration test facility and KUH fuel tank qualification test result.

  • PDF

Development of Hydrogen Type3 composite cylinder for Fuel Cell vehicle (연료전지 차량용 TYPE3 복합재 고압용기 개발)

  • Chung, Jae-Han;Cho, Sung-Min;Kim, Tae-Wook;Park, Ji-Sang;Jeong, Sang-Su
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.165-168
    • /
    • 2007
  • The objective of this study is to demonstrate and commercialized for on-board fuel storage system for the hydrogen fuel cell vehicles. Type3 composite cylinder is consisting of the full wrapped composites on a seamless aluminum liner. Especially, the seamless aluminum liner has been commercialized with development of fabrication through this study. The key technologies, including design, analysis and the optimized filament winding process for 350bar composite cylinder, were established and verified with design qualification test in accordance with international standard. And the facilities for fabrication and design qualification test have been constructed.

  • PDF

Recent Progress of the DUPIC Fuel Fabrication in Korea

  • Lee, J.W.;Kim, W.K.;Lee, Jae-W.;Park, G.I.;YANG, M.S.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.02a
    • /
    • pp.170-181
    • /
    • 2004
  • DUPIC powder and pellets were successfully fabricated in accordance with the quality assurance program described in the Quality Assurance Manual for DUPIC fuel fabrication, which was developed on the basis of the CAN3-Z299.2-85 standard. This manual describes the quality management system applicable to the activities performed for DUPIC fuel fabrication. It covers the work processes, policies and procedures used for planning, executing, and verifying the work carried out for DUPIC fuel fabrication. It is important that a Quality Program is in place before the fabrication of the fuel for irradiation testing. In order to qualify the DUPIC pellet manufacturing processes, 3 series of experiments for the pre-qualification and 3 series for the qualification were performed. In these experiments, the optimum process conditions were established. Then, under the control of the QA program, 8 series of production runs were performed to make the qualified DUPIC pellets in a batch size of 1 kg. In these production runs, DUPIC fuel pellets satisfying the standard CANDU fuel pellet specifications could be successfully produced.

  • PDF

Axial response of PWR fuel assemblies for earthquake and pipe break excitations

  • Jhung, Myung J.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.2
    • /
    • pp.149-165
    • /
    • 1997
  • A dynamic time-history analysis of the coupled internals and core in the vertical direction is performed as a part of the fuel assembly qualification program. To reflect the interaction between the fuel rods and grid cage, friction element is developed and is implemented. Also derived here is a method to calculate a hydraulic force on the reactor internals due to pipe break. Peak responses are obtained for the excitations induced from earthquake and pipe break. The dynamic responses such as fuel assembly axial forces and lift-off characteristics are investigated.

Qualification Test of Main Coolant Pump for an Integral Type Reactor (일체형원자로 주냉각재펌프의 검증시험)

  • Park, Sang-Jin;Yoon, Eui-Soo;Heo, Pil-Woo;Kim, Duck-Jong;Oh, Hyoung-Woo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.509-514
    • /
    • 2005
  • Main coolant pump (MCP) is a canned-motor-type axial pump to circulate the primary coolant between nuclear fuel rods and steam generators in an integral type reactor. The reactor is designed to operate under condition of 310 oC and 14.7 MPa. Thus MCP has to be tested under same operating condition as reactor design condition in order to verify its performance and safety. In present work, a test loop to simulate real operating situation of the reactor has been designed and constructed to test MCP. And then, as a part of qualification test, canned motor functional test and pump hydraulic performance test have been carried out upon a prototype MCP. Canned motor efficiency and pump hydraulic characteristics including homologous curves and NPSH curves were obtained from the qualification test.

  • PDF

Qualification Test of a Main Coolant Pump for SMART Pilot (SMART 연구로 주냉각재펌프의 검증시험)

  • Park, Sang-Jin;Yoon, Eui-Soo;Oh, Hyoung-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.858-865
    • /
    • 2006
  • SMART Pilot is a multipurpose small capacity integral type reactor. Main coolant pump (MCP) of SMART Pilot is a canned-motor-type axial pump to circulate the primary coolant between nuclear fuel and steam generator in the primary system. The reactor is designed to operate under condition of $310^{\circ}C$ and 14.7MPa. Thus MCP has to be tested under same operating condition as reactor design condition to verify its performance and safety. In present wort a test apparatus to simulate real operating situations of the reactor has been designed and constructed to test MCP. And then functional tests, performance tests, and endurance tests have been carried out upon a prototype MCP. Canned motor characteristics, homologous head/torque curves, coast-down curves, NPSH curves and lift-time performance variations were obtained from the qualification test as well as hydraulic performance characteristics of MCP.

Metal Fuel Development and Verification for Prototype Generation IV Sodium-Cooled Fast Reactor

  • Lee, Chan Bock;Cheon, Jin Sik;Kim, Sung Ho;Park, Jeong-Yong;Joo, Hyung-Kook
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1096-1108
    • /
    • 2016
  • Metal fuel is being developed for the prototype generation-IV sodium-cooled fast reactor (PGSFR) to be built by 2028. U-Zr fuel is a driver for the initial core of the PGSFR, and U-transuranics (TRU)-Zr fuel will gradually replace U-Zr fuel through its qualification in the PGSFR. Based on the vast worldwide experiences of U-Zr fuel, work on U-Zr fuel is focused on fuel design, fabrication of fuel components, and fuel verification tests. U-TRU-Zr fuel uses TRU recovered through pyroelectrochemical processing of spent PWR (pressurized water reactor) fuels, which contains highly radioactive minor actinides and chemically active lanthanide or rare earth elements as carryover impurities. An advanced fuel slug casting system, which can prevent vaporization of volatile elements through a control of the atmospheric pressure of the casting chamber and also deal with chemically active lanthanide elements using protective coatings in the casting crucible, was developed. Fuel cladding of the ferritic-martensitic steel FC92, which has higher mechanical strength at a high temperature than conventional HT9 cladding, was developed and fabricated, and is being irradiated in the fast reactor.