• Title/Summary/Keyword: Fuel Nozzle

Search Result 625, Processing Time 0.021 seconds

Study on Simulation of Fuel Injection Nozzle for Marine Medium Speed Diesel Engine (선박용 중속디젤엔진 연료분사노즐 해석 연구)

  • Yang, Young-Joon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.3
    • /
    • pp.41-47
    • /
    • 2013
  • This study was carried out to improve the design of fuel injection nozzle for marine medium speed diesel engine. For this purpose, fuel injection nozzle was modeled and simulated using CATIA V5R19 and FLUENT & MSC Nastran. Analyses of flow and heat transfer, respectively, were performed to find the optimal design of fuel injection nozzle. As the results, big pressure drop, which may lead to cavitation damage, was occurred at inlet of fuel injection hole with diameter 0.3mm. Furthermore, it was confirmed that the increase of mean temperature of fuel injection nozzle was almost a half in comparison with that of fuel injection nozzle tip.

Performance Simulation for the Variation of Fuel Injection Nozzle Configurations in Medium Speed Diesel Engine (중형 디젤 엔진의 연료분사노즐 형상에 따른 성능 해석 연구)

  • Kim, Ki-Doo;Youn, Wook-Hyun;Kim, Byong-Seok;Ha, Ji-Soo;Ahn, Kwang-Hean;Kim, Ju-Tae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.662-668
    • /
    • 2006
  • The effects of fuel injection nozzle hole on the NOx emission and fuel oil consumption of medium speed diesel engine HYUNDAI HiMSEN 6H21/32 engine are investigated by engine performance simulation. The results of performance simulation are verified by experimental results of NOx omission fuel oil consumption, cylinder pressure, and heat release rate according to the variation of the number of fuel injection nozzle hole and engine load. The performance simulations are also carried out to optimize the fuel injection nozzle of 6H21/32 engine in respect to the NOx emission and fuel oil consumption. The engine performance measurements are performed to verify the results of performance simulation and to investigate the effects of fuel injection nozzle on engine performance. The results of measurement indicate that significant NOx reduction can be achieved with minimum deterioration in fuel oil consumption by optimizing the geometry of fuel injection nozzle on 6H21/32 engine.

Examination of 2-Fluid Nozzle and 3-Fluid Nozzle for Fuel Reformer of 5 kW SOFC System (5 kW급 SOFC 시스템의 연료 개질기를 위한 2-유체 노즐과 3-유체 노즐의 검토)

  • Kwon, Hwa-Kil;Lee, Chi-Young;Lee, Sang-Yong
    • Journal of ILASS-Korea
    • /
    • v.13 no.1
    • /
    • pp.16-21
    • /
    • 2008
  • In the present study, the 2-fluid nozzle and 3-fluid nozzle to atomize the diesel and water with air for the fuel reformer of SOFC system were experimentally examined. In the 2-fluid nozzle, the diesel and water were alternately atomized due to bislug flow pattern, and it implies that the mixing of both liquids strongly affects the atomization pattern. On the other hand, in the 3-fluid nozzle, the diesel and water were atomized simultaneously due to the separated injection channels without mixing problem. Therefore, compared to the 2-fluid nozzle, the 3-fluid nozzle is suitable for the stable operation of the fuel reformer. In case of the 3-fluid nozzle, Type A where the air was supplied through the central channel was the most efficient.

  • PDF

Effects of the fuel injection system on combustion in a diesel engine (디젤기관의 연소에 미치는 분사계의 영향)

  • Kwon, S. I.;Kim, W.
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.37-44
    • /
    • 1993
  • Fuel injection system is an important tool in the exhaust emission and performance of a diesel engine. Effects of the fuel injection system in diesel combustion was investigated experimentally by measuring the performance and analyzing the combustion phenomena in a D.I. diesel engine. The selected injection parameters were nozzle opening pressure, nozzle projection length, and nozzle spray angle. From the measured results, it is shown that the fuel injection pipe diameter is an effective means to improve engine performance in a middle and high speed range and the 2 stage spring nozzle holder has the advantage of increasing the engine performance due to the initial injection pressure in a low speed range. It has been also shown that increasing nozzle opening pressure resulted in decrease in smoke, but increase in NO$_{x}$ from the engine.e.

  • PDF

Characteristics of Internal Flow and Fuel Spray in a Fuel Nozzle Orifice (연료노즐의 내부유동 및 외부분무 특성)

  • Hong, S.T.;Park, J.H.;Koo, J.Y.
    • Journal of ILASS-Korea
    • /
    • v.1 no.1
    • /
    • pp.76-84
    • /
    • 1996
  • The nozzle geometry and up-stream inject ion condition affect the characteristics of flow inside the nozzle. such as turbulence and cavitation bubbles. Flow details in fuel nozzle orifice with sudden contraction of cross sectional area have been investigated both experimentally and numerically. The measurements of velocities of internal flow in a scaled-up nozzle with different length to diameter rat io(L/d) were made by laser Doppler velocimetry in order to clarify the effect of internal flow on the characteristics of fuel spray. Mean and fluctuating velocities and discharge coefficients were obtained at various Reynolds numbers. The turbulent intensity and turbulence kinetic energy in a sharp inlet nozzle were higher than that in a round inlet nozzle. Calculations were also performed for the same nozzles as scaled-up experimental nozzles using the SIMPLE algorithm. External spray behavior under different nozzle geometry and up-stream flow conditions using Doppler technique and visualization technique were also observed.

  • PDF

Load Concentration Factor Analysis of Fuel Assembly Guide Thimble (핵연료집합체 안내관의 하중집중계수 해석)

  • Lee Young-Shin;Jeon Sang-Youn
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.93-100
    • /
    • 2005
  • The top and bottom nozzles of PWR fuel assembly are connected by guide thimbles and an instrumentation tube that are connected with spacer grids. The fuel rods are inserted into the each cell of spacer grids. The loads acting on the fuel assembly are transmitted to the guide thimbles through the flow plate of top nozzle The axial loads applied to the fuel assembly are not equally distributed among the guide thimble due to the geometry of the top nozzle flow plate and spacer grid. In this study, the load concentration factors for the $17\times17$ fuel assembly were calculated. The analytical model fur the calculation of the load concentration factor of top nozzle flow plate was developed using ANSYS 5.6. The finite element analyses were performed using the model composed of top nozzle, guide thimble, and spacer grid. And, the analysis results were compared with the test results.

Analysis of Spray Characteristic for 3-Component Mixed Fuel (3 성분 혼합연료의 분무특성 해명)

  • Myong, Kwang-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.8
    • /
    • pp.589-595
    • /
    • 2009
  • The instability wave formed near nozzle region grows to vortex with large scale in downstream region of spray. It plays an important role in the fuel-air mixing, combustion process and engine exhaust emissions in direct injection diesel engine. The objective of this study is to analyze effect of variant parameters (injection pressure, ambient gas density, etc.) and fuel properties on spray instability near nozzle region. Spray structure near nozzle region was investigated using a magnification photograph. A pulsed Nd-YAG laser was used as a light source, and image was taken by CCD camera. The following conclusions are drawn from this experimental analysis. In low ambient density, the effect of fuel properties on spray instability near nozzle region is dominant. In high ambient density, the effect of ambient gas on spray instability near nozzle region is dominant. High jet velocity has strong influence on spray instability.

Point Cloud Measurement Using Improved Variance Focus Measure Operator

  • Yeni Li;Liang Hou;Yun Chen;Shaoqi Huang
    • Current Optics and Photonics
    • /
    • v.8 no.2
    • /
    • pp.170-182
    • /
    • 2024
  • The dimensional accuracy and consistency of a dual oil circuit centrifugal fuel nozzle are important for fuel distribution and combustion efficiency in an engine combustion chamber. A point cloud measurement method was proposed to solve the geometric accuracy detection problem for the fuel nozzle. An improved variance focus measure operator was used to extract the depth point cloud. Compared with other traditional sharpness evaluation functions, the improved operator can generate the best evaluation curve, and has the least noise and the shortest calculation time. The experimental results of point cloud slicing measurement show that the best window size is 24 × 24 pixels. In the height measurement experiment of the standard sample block, the relative error is 2.32%, and in the fuel nozzle cone angle measurement experiment, the relative error is 2.46%, which can meet the high precision requirements of a dual oil circuit centrifugal fuel nozzle.

The Optimization of Fuel Injection Nozzles for the Reduction of NOx Emissions in a Large Diesel Engine (대형 디젤엔진의 NOx 저감을 위한 연료분사노즐 최적화 연구)

  • Yoon, Wook-Hyeon;Kim, Byung-Seok;Kim, Dong-Hun;Kim, Ki-Doo;Ha, Ji-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.60-65
    • /
    • 2004
  • Numerical simulations and experiments have been carried out to investigate the effect of fuel injection nozzles on the combustion and NOx formation processes in a medium-speed marine diesel engine. Spray visualization experiment was performed in the constant-volume high-pressure chamber to verify the numerical results on the spray characteristics such as spray angle and spray tip penetration. Time-resolved spray behaviors were captured by high-speed digital camera and analyzed to extract the information on the spray parameters. Spray and combustion phenomena were examined numerically using FIRE code. Wave breakup and Zeldovich models were adopted to describe the atomization characteristics and NOx formation processes. Numerical results were verified with experimental data such as cylinder pressure, heat release rate and NOx emission. Finally, the effects of fuel injection nozzles on the engine performance were investigated numerically to find the optimum nozzle parameters such as fuel injection angle, nozzle hole diameter and number of nozzle holes. From this study, the optimum fuel injection nozzle (nozzle hole diameter, 0.32 mm, number of nozzle holes, 8 and fuel injection angle, $148^{\circ}$) was selected to reduce both the fuel consumption and NOx emission. The reason for this selection could be explained from the highest fuel-air mixing in the early phase of injection due to the longest spray tip penetration and the highest heat release rate after $19^{\circ}$ ATDC due to the increased injection duration.

Observations on the Near-Nozzle Behavior of an Unsteady Fuel Spray (노즐부근에서의 비정상분무 거동)

  • 구자예;정흥철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.4
    • /
    • pp.100-111
    • /
    • 1994
  • Observations on the near-nozzle behavior of an unsteady fuel spray through single cylindrical hole nozzle were made by phase Doopler anemometer and microphotographs. At the edge of the spray, droplet velocity peaked during needle opening and closing. Droplet sizes tended to be small on the edge of spray. The near-nozzle spray angle taken from the microphotographs was time-dependent, even though it increased with gas-to-liquid density ratio as expected. The near-nozzle spray angle was the greatest on the initial stage and decreased to a relatively constant value after about one third of the total injection duration regardless of the ambient gas conditions, even in the near-vaccum condition. The wider near-nozzle spray angle in the early stage is due to the flow characteristics inside the nozzle rather than aerodynamic interactions. However, once the spray was established, aerodynamic interactions are essential in the near-nozzle atomization.

  • PDF