• 제목/요약/키워드: Fuel Lean Region

검색결과 38건 처리시간 0.022초

희박 예혼합 정도에 따른 모형 덤프 가스터빈 연소기의 화염 구조와 $NO_X$배출 특성 (Characteristics of Flame Structure and $NO_X$ Emission in a Dump Gas Turbine as Fuel-Air Mixing Degrees)

  • 유혜연;전충환;장영준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3452-3457
    • /
    • 2007
  • Experiments were carried out in an atmopheric pressure, lab-scale gas turbine combustor to see the effect of partial premixing on unstable flame structure and $NO_X$ emission characteristics. The swirl angle is 45 deg., fuel-air mixing degrees were varied 0, 50, and 100% respectively at equivalence ration ranging from 0.53 to 0.79. The evaluation of phased-locked OH chemiluminescence images were acquired with an ICCD. $NO_X$ emission characteristics were also investigated at each experimental condition. The effect of the fuel-air mixing degree on the flame structure was obtained from phase-locked $OH^*$ images. And it was obtained from local heat release characteristics that the information about the region which the combustion instability was amplified or damped. It also could be confirmed that ${\sigma}$ has greatly influence on $NO_X $emission characteristics at lean regimes. It would be expected that it could provide invaluable data for understanding the mechanism of combustion instability

  • PDF

직접분사식 가솔린엔진의 분사 비율에 따른 연소특성에 관한 연구 (A Study on the Characteristics of Combustion according to Injection Strategy in DISI Engine)

  • 인병덕;박상기;이기형
    • 한국자동차공학회논문집
    • /
    • 제20권1호
    • /
    • pp.68-76
    • /
    • 2012
  • Recently, the important issues of gasoline engine are to reduce the fuel consumption and emission. Thus, many researchers are studying the technology to solve these problems. One approach of these issues is to achieve homogeneous charge combustion and stratified change combustion with various injection strategy. In this study, the combustion characteristics of DISI engine accrding to injection strategy were examined. The effect of injection timing on lean limit A/F were investigated using dual DISI single cylinder. The results show that the engine operation region of dual DISI type engine is larger than that of PFI and DISI type engine cases. Especially, late injection is very effective to extend the operation region more than any other injection timings. In addition, the results show that when the DISI injection ratio is increase, leam limit A/F is improved. It means that the dual injection system car meet with emission regulations and reduce the fuel consumption. Also, combustion pressure of dual injection system is much higher than PFI and DISI injection.

高溫空氣流에 噴射한 噴霧의 自然燃燒에 관한 硏究 - 제3보: 분무의 연소기간 측정, 보조연료의 분사시간 및 난류가 분무의 착화지정기간 단축에 미치는 영향 - (A Study on the Spontaneous Ignition of the Fuel Injected into a Hot Air Stream - Part III : Measurement of Flaming Duration, Effects of Auxiliary-Fuel Injection-Timing and Turbulence on Shortening the Ignition Delay Period -)

  • 방중철;태전간랑
    • 대한기계학회논문집
    • /
    • 제10권3호
    • /
    • pp.367-375
    • /
    • 1986
  • 본 연구에서는, 주분무의 착화지연기간에 미치는 보조연료 분사시기의 영향 및 공기유동을 연소장 내에 도입시켜 분무와 공기의 혼합을 적극적으로 촉진시킴에 따라 그 후의 연소과정이 어떤 영향을 받는가에 대해서 검토했다.또 소형고속 디이 젤기관에서는 분무의 연소기간을 최대한 단축 시키지 않으면 안되므로, 보조연료 분사 에 의해 그 단축목적이 어느 정도 달성될 수 있는 가능성을 제2보에서 시사한 바 있으 나 본 연구에서 더욱 상세히 검토했다.

모델연소기에서의 분사기와 선회기의 영향 (The Effects of Injector and Swirler on the Flame Stability in a Model Combustor)

  • 박승훈;이동훈;배충식
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1998년도 제17회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.9-21
    • /
    • 1998
  • The optimization of frontal device including fuel nozzle and swirler is required to secure the mixing of fuel and air, and the combustion stability in the gas turbine combustor design for the reduction of pollutant emissions and the increase of combustion efficiency. The effects of injection nozzle and swirler on the flow field, spray characteristics and consequently the combustion stability, were experimentally investigated by measuring the velocity field, droplet sizes of fuel spray, lean combustion limit and the temperature field in the main combustion region. The effect of fuel injection nozzle was tested by adopting three different nozzles; a dual orifice fuel nozzle, a hollow cone nozzle and a solid cone nozzle. These tests were combined with the three different swirler geometries; a dual-stage swirler with 40$^{\circ}$ /-4 5$^{\circ}$ vanes and two single-stage swirlers with 40$^{\circ}$ vane angle having 12 and 16vanes, respectively. Flow fields and spray characteristics were measured with APV(Adaptive Phase Doppler Velocimetry) under atmospheric condition using kerosine fuel. Temperatures were measured by Pt-PtI3%Rh, R-type thermocouple which was 0.2mm thick. It was found that the dual swirler resulted in the biggest recirculation zone with the highest reverse flow velocity at the central region, which lead the most stable combustion. The various combustion characteristics were observed as a function of the combination between the injector and swirler, that gave a tip for the better design of gas turbine combustor.

  • PDF

음영사진의 화상해석에 의한 디젤화염에 관한 연구 (A Study on the Diesel Flame by Means of Image Analysis ofn Shadow Photographs)

  • 장영준;박호준;신본무정
    • 대한기계학회논문집
    • /
    • 제14권5호
    • /
    • pp.1222-1233
    • /
    • 1990
  • 본 연구에서는 급속압축장치에서 실현된 단발분무하염내의 매연을 레이저음영 사진법에 의하여 가시화하고, 화염내의 매연농도의 시간적, 공간적분포를 조사한다. 또 전보에서 측정된 비증발분무내의 당량비분포와 비교검토하여 디젤화염내의 매연 생 성기구를 고찰하고, 분위기조건에 따른 착화지연이 매연생성에 미치는 영향 및 매연생 성과 열발생율과의 관계를 밝힌다.

부상화염에서 노즐직경과 연료유량에 따른 화염전파속도와 체적연소반응속도의 변화 특성에 관한 연구 (The Characteristics of the Flame Propagation Velocity and Volume Integral of Reaction Rate with the Variation of Nozzle Diameter and Fuel Injection Flow Rate for a Liftoff Flame)

  • 하지수;김태권
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권2호
    • /
    • pp.250-258
    • /
    • 2010
  • 부상화염에서 노즐직경과 연료유량을 변화하면서 화염전파속도와 연료과농영역, 연료희박영역, 확산화염 영역에서의 체적연소반응속도의 변화 특성을 수치해석을 통하여 살펴보았다. 본 연구에서 사용한 3가지 연료노즐 직경(d=0.25, 0.30, 0.35mm)에서 연료분출속도를 증가시키면 화염전파속도가 증가하지만 변화폭은 4.3%를 넘지 않는다. 연료분출속도를 증가함에 따른 연료량 증가는 직접적이고 선형적으로 체적연소반응속도에 연관되어 있음을 알 수 있었고, 따라서 부상화염에서 연료량의 증가는 화염전파속도 보다 체적연소반응속도가 연료량 변화에 대응함을 알 수 있었다.

후처리 시스템을 장착한 디젤엔진의 EGR 밸브 작동에 따른 성능 분석 (Analysis of Performance Characteristics on Diesel Engine with Aftertreatment and EGR System)

  • 박철웅;최영;임기훈
    • 한국자동차공학회논문집
    • /
    • 제18권5호
    • /
    • pp.124-129
    • /
    • 2010
  • The direct injection (DI) diesel engine has become a prime candidate for future transportation needs because of its high thermal efficiency. However, nitrogen oxides (NOx) increase in the local high temperature regions and particulate matter (PM) increases in the diffusion flame region within diesel combustion. Therefore, the demand for developing hybrid system consist of exhaust gas recirculation (EGR) and aftertreatment system as well as diesel particulate filter (DPF) or lean NOx trap (LNT) should be applied. The variation of EGR rate due to the malfunction of EGR valve can affect not only the combustion stability of engine but also the performance of aftertreatment system. In this research, 2.0 liter 4-cylinder turbocharged diesel engine was used to investigate the combustion and emission characteristics for various operating conditions with EGR. While the fuel consumption was increased with increase of EGR rate, NOx emission was improved by maximum 90% at low speed, low load operating condition. To achieve combustion stability and reliability of aftertrearment system with minimum penalty in fuel consumption and emissions, the fault diagnosis of EGR malfunction must be employed.

가스터빈 연소기의 화염 불안정성에 관한 연구 (A study on the combustion instability in a bluffbody dump combustor)

  • 이병준
    • 대한기계학회논문집B
    • /
    • 제22권7호
    • /
    • pp.1022-1029
    • /
    • 1998
  • The relation of the inlet fuel distribution, velocity, and overall equivalence ratio to the stability of a lean burning no-swirl dump combustor was examined. Premixed or partially premixed natural gas was introduced into the air stream, which flowed to the dump region through an annular inlet pipe. Inlet air was preheated upto 400 deg.C. Combustion instability was observed to occur at higher value of equivalence ratio (> 0.6) as the degree of unpremixedness was increased. Instabilities exhibited a dominant frequency of ~ 500 Hz, which corresponded to a half wave mode of combustor. CH chemiluminescence and pressure fluctuations were in-phase when combustion instabilities occurred. Acetone LIF images revealed that there was a strong fuel concentration gradient across the inlet annulus. Phase resolved OH LIF images showed that inlet fuel distribution was affected by the combustion instabilities.

An Experimental Study on the Combustion Characteristics of a Low NOx Burner Using Reburning Technology

  • Ahn, Koon-Young;Kim, Han-Seok;Son, Min-Gyu;Kim, Ho-Keun;Kim, Yong-Mo
    • Journal of Mechanical Science and Technology
    • /
    • 제16권7호
    • /
    • pp.950-958
    • /
    • 2002
  • The combustion characteristics of a low NOx burner using reburning technology have been experimentally studied. The return burner usually has three distinct reaction zones which include the primary combustion zone, the reburn zone and the burnout zone by provided secondary air. NOx is mainly produced in a primary combustion zone and a certain portion of NOx can be converted to nitrogen in the rebury zone. In the burnout zone, the unburned mixtures are completely oxidated by supplying secondary air. Liquefied Petroleum Gas (LPG) was used as main and reburn fuels. The experimental parameters investigated involve the main/reburn fuel ratio, the primary/secondary air ratio, and the injection location of rebury fuel and secondary air. When the amount of return fuel reaches to the 20-30% of the total fuel used, the overall NO reduction of 50% is achieved. The secondary air is injected by two different ways including vertical and parallel injection. The injector of secondary air is located at the downstream region of furnace for a vertical-injection mode, which is also placed at the inlet primary-air injection region for a parallel-injection mode. In case of the vertical injection of the secondary air flow, the NOx formation of stoichiometric condition at a primary combustion zone is nearly independent of the rebury conditions (locations, fuel/air ratios) while the NOx emission of the fuel-lean condition is considerably influenced by the reburn conditions. In case of the parallel injection of the secondary air, the NOx emission is sensitive to the air ratio rather than the fuel ratio and the reburning process often coupled with the multiple air-staging and fuel-staging combustion processes.

유사차원해석 모델을 이용한 초희박 조건에서의 가솔린 직분사 엔진 연소 및 배기 예측 (Quasi-dimensional Analysis of Combustion and Emissions in a Stratified GDI Engine under Ultra-lean Conditions)

  • 이재서;허강열;권혁모;박재인
    • 한국자동차공학회논문집
    • /
    • 제23권4호
    • /
    • pp.402-409
    • /
    • 2015
  • In this study a quasi-dimensional model is developed to predict the combustion process and emissions of a GDI engine under ultra-lean conditions. Combustion of a GDI engine condition is modeled as two simultaneous processes to consider significant fuel stratification. The first process is premixed flame propagation described as burning in a hemispherically propagating flame. The second is diffusion-controlled combustion modeled as mixing of multiple spray zones in the burned gas region. Mixing is an important factor in ultra-lean conditions leaving stratified mixture of developing sprays behind the propagating premixed flame. Sheet breakup and Hiroyasu models are applied to predict the velocity of a hollow cone spray. Validation is performed against measured pressures and NOx and CO emissions at different load and rpm conditions in the test engine.