• 제목/요약/키워드: Fuel Flow

검색결과 2,592건 처리시간 0.027초

Horizontal Firing Boiler의 열유동 해석 (Numerical Analysis on Flow and Heat Transfer of Horizontal Firing Boiler)

  • 김광추;박만흥;김종길;최청렬;강대웅;김창녕
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.973-978
    • /
    • 2001
  • Numerical Analysis for liquid fuel combustion of horizontal firing boiler is performed. The mixture-fraction/PDF equilibrium chemistry model is used to predict the combustion of the vaporized fuel. P1 model for radiation effect is used. Superheater, reheater and economizer is modeled using porous with heat sink. Flow and temperature field is investigated, and distribution of thermal $NO_{x}$ and CO is investigated. Computation as the change of excess air and swirling is performed to investigate the change of thermal $NO_{x}$.

  • PDF

가솔린 엔진의 연료분사시기가 희박가연한계에 미치는 영향에 관한 연구 (Effects of Injection Timing on the Lean Misfire Limit in a SI Engine)

  • 엄인용;정경석;정인석
    • 한국자동차공학회논문집
    • /
    • 제5권5호
    • /
    • pp.97-103
    • /
    • 1997
  • Effects of fuel injection timing on the lean misfire limit of a sequential MPI SI engine has been investigated. To investigate the interaction of injection timing and intake flow characteristics, so called axial stratification phenomena, 4 kinds of different intake swirl port of the same combustion chamber geometry have been teated in a single cylinder engine test bench. And 2 kinds of fuel, gasoline and compressed natural gas(CNG), were used to see the effect of liquid fuel vaporization. Result shows that combination of port swirl and injection timing governs the lean misfire limit and lean misfire limit envelopes remain almost the same for a given ratio regardless of engine speed. It is also found that two phase flow has some effects on lean misfire limit.

  • PDF

CFD 해석을 이용한 PEMFC 용 기체확산층의 특성평가 (The Characteristics Evaluation of the Gas Diffusion Layer for a PEM Fuel Cell by Computational Fluid Dynamics)

  • 김병희;최종필;전병희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.207-210
    • /
    • 2005
  • In this paper, a two-dimensional cross-channel model was applied to investigate influence of the gas diffusion layer(GDL) property and flow field geometry in the anode side for proton exchange membrane fuel cell(PEMFC). The GDL is made of a porous material such as carbon cloth, carbon paper, or metal wire mesh. To the simplicity, the GDL is represented as a block of material containing numerous pathways through which gaseous reactants and liquid water can pass. The purpose of present work was to study the effect of the GDL thickness and the porosity, and flow field geometry by computational fluid dynamics(CFD)

  • PDF

촉매 활성층 두께 제어를 통한 연료전지 성능 해석 (Performance Analysis of Fuel Cell by Controlling Active Layer Thickness of Catalyst)

  • 김홍건
    • 한국공작기계학회논문집
    • /
    • 제16권3호
    • /
    • pp.133-140
    • /
    • 2007
  • A 2-D model of fluid flow, mass transport and electrochemistry is analysed to examine the effect of current density at the current collector depending on active layer thickness of catlyst in polymer elecrolyte fuel cells. The finite element method is used to solve the continuity, potential and Maxwell-Stefan equations in the flow channel and gas diffusion electrode regions. For the material behavior of electrode reactions in the active catalyst layers, the agglomerate model is implemented to solve the diffusion-reaction problem. The calculated model results are described and compared with the different thickness of active catalyst layers. The significance of the results is discussed in the viewpoint of the current collecting capabilities as well as mass transportation phenomena, which is inferred that the mass transport of reactants dictates the efficiency of the electrode in the present analysis.

End-burning 하이브리드 추진시스템의 연료에 따른 연소특성 연구 (A Study on Combustion Characteristics of End-Burning Hybrid Propulsion System with the Various Fuel)

  • 이승철;김진곤;김수종;유우준;이정표
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제25회 추계학술대회논문집
    • /
    • pp.323-326
    • /
    • 2005
  • 본 연구에서는 연료 따른 End-Burning 하이브리드 추진 시스템의 연소 특성을 파악하기 위한 실험적 연구를 수행하였다. 연료로는 PMMA, PE를 사용하였으며 산화제는 기체 산소를 사용하였다. 연료의 후퇴율은 산화제 유량뿐만 아니라 연료의 열역학적 성질의 함수이다. 본 실험을 통하여 연료의 후퇴율이 산화제 유량과 물질전달계수인 B number로 표현된 경험식을 얻었다.

  • PDF

연료차단밸브의 열해석에 관한 수치적 연구 (A Numerical Study on Thermal Analysis of Fuel Shut-off Valve)

  • 백낙곤;이재윤
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.559-564
    • /
    • 2011
  • 연료차단밸브의 운용조건하에서 열 및 유체 특성을 수치적으로 연구하였다. 밸브의 크기는 15mm이고 최대유량은 600kph이다. 해석은 STAR-CCM+를 이용하여 수행하였다. 수치해석으로부터 얻은 결과는 시험치와 비교를 하였으며 전체적으로 peak에 도달하는 온도의 기울기는 유사한 경향을 보이며 온도값도 거의 일치를 하였다.

  • PDF

Numerical study on fluid flow by hydrodynamic loads in reactor internals

  • Kim, Da-Hye;Chang, Yoon-Suk;Jhung, Myung-Jo
    • Structural Engineering and Mechanics
    • /
    • 제51권6호
    • /
    • pp.1005-1016
    • /
    • 2014
  • Roles of reactor internals are to support nuclear fuel, provide insertion and withdrawal channels of nuclear fuel control rods, and carry out core cooling. In case of functional loss of the reactor internals, it may lead to severe accidents caused by damage of nuclear fuel assembly and deterioration of reactor vessel due to attack of fallen out parts. The present study is to examine fluid flows in reactor internals subjected to hydrodynamic loads. In this context, an integrated model was developed and applied to two kinds of numerical analyses; one is to analyze periodic loading effect caused by pump pulsation and the other is to analyze random loading effect employing different turbulent models. Acoustic pressure distributions and flow velocity as well as pressure and temperature fields were calculated and compared to establish appropriate analysis techniques.

Theoretical analysis on vibration characteristic of a flexible tube under the interaction of seismic load and hydrodynamic force

  • Lai, Jiang;He, Chao;Sun, Lei;Li, Pengzhou
    • Nuclear Engineering and Technology
    • /
    • 제52권3호
    • /
    • pp.654-659
    • /
    • 2020
  • The reliability of the spent fuel pool instrument is very important for the security of nuclear power plant, especially during the earthquake. The effect of the fluid force on the vibration characteristics of the flexible tube of the spent fuel pool instrument needs comprehensive analysis. In this paper, based on the potential flow theory, the hydrodynamic pressures acting on the flexible tube were obtained. A mathematical model of a flexible tube was constructed to obtain the dynamic response considering the effects of seismic load and fluid force, and a computer code was written. Based on the mathematical model and computer code, the maximum stresses of the flexible tube in both safe shutdown earthquake and operating basis earthquake events on the spent fuel pool with three typical water levels were calculated, respectively. The results show that the fluid force has an obvious effect on the stress and strain of the flexible tube in both safe shutdown earthquake and operating basis earthquake events.

용융탄산염형 연료전지의 스택구조와 온도특성 (Temperature Characteristics of the Molten Carbonate Fuel Cell Stack)

  • 이충곤;안교상;박성연;서혜경;임희천
    • 한국수소및신에너지학회논문집
    • /
    • 제15권1호
    • /
    • pp.54-61
    • /
    • 2004
  • Temperature characteristics in a stack of molten carbonate fuel cell (MCFC) have been investigated with simulation based on the computational fluid dynamics (CFD) codes and experimental way. The MCFC has generally two stack structures when the natural gas is used as fuel; one is the external reforming type and the other is internal reforming type. Computer simulation at the external reforming stack suggests that the maximum temperature in the stack depends on the gas flow length. The 2 kW MCFC stack with 25 cm gas flow length showed about $675^\circ{C}$ of maximum temperature.

고온형 고분자 전해질 연료전지 스택 내부의 냉각판 수가 스택에 미치는 열 영향성의 수치적 연구 (Analysis of Thermal Effect by Coolant Plate Number in High-Temperature Polymer Electrolyte Membrane Fuel Cell Stack)

  • 최병욱;주현철
    • 한국수소및신에너지학회논문집
    • /
    • 제26권2호
    • /
    • pp.127-135
    • /
    • 2015
  • High-Temperautre Polymer Electrolyte Membrane Fuel Cell (HT-PEMFC) with phosphoric acid-doped polybenzimidazole (PBI) membrane has high power density because of high operating temperature from 100 to $200^{\circ}C$. In fuel cell stack, heat is generated by electrochemical reaction and high operating temperature makes a lot of heat. This heat is caouse of durability and performance decrease about stack. For these reasons, heat management is important in HT-PEMFC. So, we developed HT-PEMFC model and study heat flow in HT-PEMFC stack. In this study, we placed coolant plate number per cell number ratio as variable and analysed heat flow distribution in stack.