• Title/Summary/Keyword: Fuel Film

Search Result 350, Processing Time 0.026 seconds

Nanophase Catalyst Layer for Direct Methanol Fuel Cells

  • Chang Hyuk;Kim Jirae
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.4
    • /
    • pp.172-175
    • /
    • 2001
  • Nanophase catalyst layer for direct methanol fuel cell has been fabricated by magnetron sputtering method. Catalyst metal targets and carbon were sputtered simultaneously on the Nafion membrane surface at abnormally higher gas (Ar/He mixture) pressure than that of normal thin film processing. They could be coated as a novel structure of catalyst layer containing porous PtRu or Pt and carbon particles both in nanometer range. Membrane electrode assembly made with this layer led to a reduction of the catalyst loading. At the catalyst loading of 1.5mg $PtRu/cm^2$ for anode and 1mg $Pt/cm^2$ for cathode, it could provide $45 mW/cm^2$ in the operation at 2 M methanol, 1 Bar Air at 80"C. It is more than $30\%$ increase of the power density performance at the same level of catalyst loading by conventional method. This was realized due to the ultra fine particle sizes and a large fraction of the atoms lie on the grain boundaries of nanophase catalyst layer and they played an important role of fast catalyst reaction kinetics and more efficient fuel path. Commercialization of direct methanol fuel cell for portable electronic devices is anticipated by the further development of such design.

A Generalized Model for the Prediction of Thermally-Induced CANDU Fuel Element Bowing (CANDU 핵연료봉의 열적 휨 모형 및 예측)

  • Suk, H.C.;Sim, K-S.;Park, J.H.
    • Nuclear Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.811-824
    • /
    • 1995
  • The CANDU element bowing is attributed to actions of both the thermally induced bending moments and the bending moment due to hydraulic drag and mechanical loads, where the bowing is defined as the lateral deflection of an element from the axial centerline. This paper consider only the thermally-induced bending moments which are generated both within the sheath and the fuel and sheath by an asymmetric temperature distribution with respect to the axis of an element The generalized and explicit analytical formula for the thermally-induced bending is presented in con-sideration of 1) bending of an empty tube treated by neglecting the fuel/sheath mechanical interaction and 2) fuel/sheath interaction due to the pellet and sheath temperature variations, where in each case the temperature asymmetries in sheath are modelled to be caused by the combined effects of (i) non-uniform coolant temperature due to imperfect coolant mixing, (ii) variable sheath/coolant heat transfer coefficient, (iii) asymmetric heat generation due to neutron flux gradients across an element and so as to inclusively cover the uniform temperature distributions within the fuel and sheath with respect to the axial centerline. As the results of the sensitivity calculations of the element bowing with the variations of the parameters in the formula, it is found that the element bowing is greatly affected relatively with the variations or changes of element length, sheath inside diameter, average coolant temperature and its variation factor, pellet/sheath mechanical interaction factor, neutron flux depression factor, pellet thermal expansion coefficient, pellet/sheath heat transfer coefficient in comparison with those of other parameters such as sheath thickness, film heat transfer coefficient, sheath thermal expansion coefficient and sheath and pellet thermal conductivities.

  • PDF

A Study of Heat Flux and Instantaneous Temperature According to the Equivalence Ratio in a Constant Volume Combustion Chamber (정적 연소기에서 당량비 변화에 따른 순간열유속에 관한 연구)

  • 이치우
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.624-632
    • /
    • 2003
  • In the gasoline engine industry. there has been a trend towards the development of high performance engines with improved fuel efficiency, reduced weight and smaller sizes. These trends help to solved engine problems related to thermal load and abnormal combustion. In order to investigate these Problems, a thin film-type probe for instantaneously measuring temperatures has been suggested. A method for manufacturing such a probe was established in this study. The instantaneous surface temperature of a constant volume combustion chamber was measured by this probe and the heat flux was obtained through Fourier analysis. A peak instantaneous temperature was obtained after 55∼60 ms from ignition and the temperature increased according to an equivalence ratio and varied differently according to the position of the probe. Total heat loss during combustion period was affected by the equivalence ratio and differed widely in accordance to the position of the probe.

Transient Breakup Phenomena of Initial Spray from High-Pressure Swirl Injector (와류형 고압인젝터의 초기분무의 분열 과도현상)

  • Choi, Dong-Seok;Kim, Duck-Jool;Ko, Chang-Kwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.8
    • /
    • pp.1132-1140
    • /
    • 1998
  • The disintegration process of initial spray from high-pressure swirl injector was investigated at different injection pressures. The transient breakup phenomena that were difficult to observe at high injection pressure were easily observed at the low injection pressure of 0.4MPa. The effect of fuel remained inside a nozzle hole volume on the penetration of initial spray was also investigated. The disintegration process of initial spray could be classified four regions: the formation of mushroom shape, the first collision, the second collision, and the development of spray, The liquid film of cup shape was particularly found in the second collision region, and the growth ratio of its length and width at low and high injection pressures were compared.

A study on the spray and flame by optically accessible D.I. diesel engine : analysis by Schlieren method and diffused background illumination method (가시용 직분식 디젤기관의 분무와 화염에 관한 연구)

  • 안수길;이덕보;라진홍
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.9-23
    • /
    • 1995
  • To analyze the spray and flame in D.I. diesel engine, the visualizing methods by schlieren photograph and diffused background illumination photograph with high speed camera are applied to optically accessible D.I.diesel engine. Wcaporating spray, spray droplets and brightness flame are taken with high speed camera by visuallizing method in accordance with various suction air temperature and injection time. The spray and flame image on the film was analyzed by image analyzer. The optically accessible D.I. diesel engine had the similar pressure characteristic to the real D.I. diesel engine. Experimental results showed that shadow areas of the evaporating spray were extended at higher suction air temperature, spray droplets had a max. Penetration length and their penetrating patterns were dependent on the surrounding gas temperature, and flame size after ignition was largely governed by the evaporated fuel quantity at ignition point and by the surrounding gas condition due to piston motion.

  • PDF

Crankshaft Bearing Design Adapting Continuous Oil Supply System (연속오일공급 형태의 크랭크샤프트 베어링 설계)

  • Yun Jeong-Eui
    • Tribology and Lubricants
    • /
    • v.20 no.2
    • /
    • pp.84-90
    • /
    • 2004
  • It is very important to improve the durability and reliability of crankshaft because of conflicting demands for lower fuel consumption and higher power output. In this study, for the crankshaft bearing design, analyses were conducted to determine the lubrication characteristics such as oil flow rate, minimum oil film thickness, friction force and increase of oil temperature at main bearing and connecting rod bearing. Additionally, supplied oil pressure and temperature effects on the bearings were simulated to figure out lubrication characteristics on the bearings. Finally the effects of increasing the bearing width and clearance were introduced on the lubrication characteristics.

Preparation of Yttria Stabilized zirconia Films by the Electrochemical Vapor Deposition (전기화학증착에 의한 이트리아 안정화 지르코니아 박막의 제조)

  • 정지원;박동원;전치훈;최병진;김대룡
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.5
    • /
    • pp.477-484
    • /
    • 1994
  • The yttria stabilized zirconia(YSZ) thin films for solid oxide fuel cell (SOFC) were fabricated by an electrochemical vapor deposition(EVD) technique using YCl3+ZrCl4+H2O gas system. The YSZ films were deposited under reduced pressure at the temperature of 1000~120$0^{\circ}C$ on the porous alumina substrates. The deposition rate, chemical composition and growth morphology were investigated by SEM, XRD, EDS. The growth rates of the films obeyed a parabolic rate law, representing that the growing process is controlled by an electrochemical transport through the YSZ film. The Y2O3 content of the films was about 10 mol%, equal to the composition of metal chloride reactant gases, approximately. The YSZ films were highly dense, the growing features showed columnar structure and surface morphologies were changed with the EVD conditions.

  • PDF

Nanocomposite Ni-CGO Synthesized by the Citric Method as a Substrate for Thin-film IT-SOFC

  • Wang, Zhenwei;Liu, Yu;Hashimoto, Shin-ichi;Mori, Masashi
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.12
    • /
    • pp.782-787
    • /
    • 2008
  • Ni-ceria cermets have been extensively investigated as candidates for the anode in intermediate-temperature solid oxide fuel cells. We have used the citric method to synthesize nanocomposite powders consisting of NiO (Ni metal content: $40{\sim}60%$ by volume) highly dispersed in $Ce_{0.9}Gd_{0.1}O_{1.95}$ (CGO). The microstructure characteristics and sintering behaviors of the nanocomposites were investigated. No impurity phases were observed and the shrinkage of these substrates matched well with that of a CGO electrolyte with a specific surface area of $11\;m^2/g$. Densification of the CGO electrolyte layer to $<5\;{\mu}m$ thickness was achieved by co-firing the laminated electrolyte with the porous NiO-CGO substrate at $1400^{\circ}C$ for 6 h.

Fabrication of Hydrocarbon Polymer Electrolyte Composite Membrane Incorporated with Pt Nanopartle for PEMFC and Its Characteristics (Pt 나노 입자가 도입된 연료전지용 탄화수소계 고분자 전해질 복합막의 제조 및 특성)

  • LEE, HONGKI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.3
    • /
    • pp.246-251
    • /
    • 2017
  • To fabricate a hydrocarbon polymer electrolyte composite membrane incorporated with Pt nanoparticle, the polymer electrolyte membrane made of a sulfonated-fluorinated hydrophilic-hydrophobic block copolymer (SFBC) and sulfonated poly (ether ether ketone) (SPEEK) blend in the wight ratio of 1 : 1 was synthesized, and a simple drying process was used in order to incorporate Pt nanoparticle into the SFBC/SPEEK film by reducing platinum (II) bis (acetylacetonate), Pt $(acac)_2$. The distribution of the Pt nanoparticles was observed by transmission electron microscopy (TEM), and mechanical and thermal properties were tested by universal testing machine (UTM) and thermogravimetry analyzer (TGA). Cation conductivity, ion exchange capacity (IEC) and I-V characteristics were estimated.

Passive Transient Voltage Suppression Devices for 42-Volt Automotive Electrical Systems

  • Shen, Z.John
    • Journal of Power Electronics
    • /
    • v.2 no.3
    • /
    • pp.171-180
    • /
    • 2002
  • New 42-volt automotive electrical systems can provide significant improvements in vehicle performance and fuel economy. It is crucial to provide protection against load dump and other overvoltage transients in 42-volt systems. While advanced active control techniques are generally considered capable of providing such protection, the use of passive transient voltage suppression (TVS) devices as a secondary or supplementary protection means can significantly improve design flexibility and reduce system costs. This paper examines the needs and options for passive TVS devices for 42-volt applications. The limitations of the commonly available automotive TVS devices, such as Zener diodes and metal oxide varistors (MOV), are analyzed and reviewed. A new TVS device concept, based on power MOSFET and thin-film polycrystalline silicon back-to-back diode technology, is proposed to provide a better control on the clamp voltage and meet the new 42-volt specification. Both experimental and modeling results are presented. Issues related to the temperature dependence and energy absorbing capability of the new TVS device are discussed in detail. It is concluded that the proposed TVS device provides a cost-effective solution for load dump protection in 42-volt systems.