• Title/Summary/Keyword: Fuel Efficiency Index

Search Result 44, Processing Time 0.021 seconds

Rating of Agricultural Tractors by Fuel Efficiency (농업용 트랙터의 연료 소비 효율 등급화)

  • Kim, Soo-Chul;Kim, Kyeong-Uk
    • Journal of Biosystems Engineering
    • /
    • v.35 no.2
    • /
    • pp.69-76
    • /
    • 2010
  • This study was conducted to develop an index of fuel consumption to rate agricultural tractors by their fuel efficiencies. The fuel consumption index consisted of two components: basic and operational indexes. The basic index is to consider an average amount of fuel consumed by engine when it transmits 20 and 100% of the rated power. The operational index is to consider the fuel consumed by tractor for typical field operations: plowing, rotavating, and the remains. The equations and procedures to obtain these indexes were proposed. The method and fuel consumption rate to classify tractors into 5 grades were also proposed. The best 15% of the tractor models were rated as the first grade, 20% as the second grade, 30% as the third grade, 20% as the fourth grade, and 15% as the fifth grade in order of fuel efficiency. Using the fuel consumption index, the classification was conducted on 143 tractor models tested at the National Institute of Agricultural Engineering from 2000 to 2007. The proposed 5-grade system of classification using the fuel consumption index could be used to rate the fuel efficiency of 20-100 kW tractor models produced over past 10 years in Korea.

Optimal Operation Scheme and Reliability Index Improvement of Micro Grid Using Energy Storage Systems (에너지 저장장치를 이용한 마이크로 그리드의 최적운영 및 신뢰도 지수 개선)

  • Kim, Kyu-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.2
    • /
    • pp.205-210
    • /
    • 2014
  • The micro grid considered in this paper consists of a diesel generator, a photovoltaic array, a wind turbine, a fuel cell, and a energy storage system. This paper explains and simulates the micro grid components in terms of accuracy and efficiency of having a system model based on the costs of fuel as well as operation and maintenance. For operational efficiency, the objective function in a diesel generator consists of the fuel cost function similar to the cost functions used for the conventional fossil-fuel generating plants. The wind turbine generator is modeled by the characteristics of variable output. The optimization is aimed at minimizing the cost function of the system while constraining it to meet the customer demand and safety of micro grid. The operating cost in fuel-cell system includes the fuel costs and the efficiency for fuel to generate electric power. To develop the overall system model gives a possibility to minimize of the total cost of micro grid. The application of optimal operation can save the interruption costs as well as the operating costs, and improve reliability index in micro grid.

An Application of Divisia Decomposition Analysis to the Measurement of Thermal Efficiency Improvement of Power Generation (화력발전소 효율개선 측정에 대한 디비지아분해기법의 적용)

  • Choi, Ki-Hong
    • Environmental and Resource Economics Review
    • /
    • v.9 no.5
    • /
    • pp.811-827
    • /
    • 2000
  • Since improved thermal efficiency reduces capacity requirements and energy costs, electricity producers often treat thermal efficiency as a measure of management or economic performance. The conventional measure of the thermal efficiency of a fossil-fuel generation system is the ratio of total electricity generation to the simple sum of energy inputs. As a refined approach, we present a novel thermal efficiency measure using the concept of the Divisia index number. Application of this approach to the Korean power sector shows improvement of thermal efficiency of 1.1% per year during 1970-1998. This is higher than the 0.9% improvement per year given by the conventional method. The difference is attributable to the effect of fuel substitution. In the Divisia decomposition context, we also show the limitations of the popular $T{\ddot{o}}rnqvist$ index formula and the superiority of the Sato-Vartia formula.

  • PDF

Flame Structure of Fuel-rich $CH_4/O_2/N_2$ Premixed Flame with Oxygen Enrichment (과농 조건에서 산소부화된 $CH_4/O_2/N_2$ 예혼합화염의 화염구조)

  • Lee, Ki-Yong;Kwon, Young-Suk
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.2
    • /
    • pp.1-6
    • /
    • 2003
  • Numerical simulations are conducted at atmospheric pressure in order to understand the effect of the oxygen enrichment level on structure of $CH_4/O_2/N_2$ premixed flames. Under several equivalence ratios the flame speeds are calculated and compared with those obtained from the experiments, the results of which are in good agreement. The effects of the oxygen enrichment are investigated on flames under fuel-rich conditions. As the oxygen enrichment level is increased from 0.21 to 1, the flame speed and the temperature are increased. The emission index of $CO_2$ is decreased in cases of flames for fuel rich mixtures, so the efficiency of combustion may be decreased. The maximum emission index of NO is obtained for 0.6 of the oxygen enrichment level.

  • PDF

Efficiency Evaluation of a Hybrid Propulsion Fuel Cell Ship Based on AIS Data (항적 데이터에 기반한 하이브리드 추진 연료전지 선박의 효율 평가)

  • Donghyun Oh;Dae-Seung Cho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.3
    • /
    • pp.146-154
    • /
    • 2023
  • Efforts have been made to reduce the greenhouse gas emissions from ships by limiting the energy efficiency index, and net zero CO2 emission was proposed recently. The most ideal measure to achieve zero emission ship is electrification, and fuel cells are considered as a practical power source of the electrified propulsion system. The electric efficiency in the electrochemical reaction of fuel cells can be achieved up to 60% practically. The remaining energy is converted to heat energy but most of them are dissipated by cooling. In the author's previous research, a hybrid propulsion system utilizing not only electricity but also heat was introduced by combining electric motor and steam turbine. In this article, long term efficiency is evaluated for the introduced hybrid propulsion system by considering a virtual 24,000 TEU class container carrier model. To reflect a more practical operating condition, the actual navigation data of a similar real ship in the real world were collected from automatic identification system data and applied. From the result, the overall efficiency of the hybrid propulsion system is expected to be higher than a conventional electric propulsion fuel cell ship by 30%.

Classification Index and Grade Levels for Energy Efficiency Classification of Agricultural Heaters in Korea

  • Shin, Chang Seop;Jang, Ji Hoon;Kim, Young Tae;Kim, Kyeong Uk
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.264-269
    • /
    • 2013
  • Purpose: This study was carried out to develop a classification index and grade levels to rate agricultural heaters for energy efficiency classification. Methods: The classification index was developed mainly by taking simplicity of calculation and easy access to relevant data into consideration. The grade levels were developed on the basis of a 5-grade classification system in which graded heaters are to be normally distributed over the grades. The value of each grade level were determined in terms of the classification index values calculated using the published performance data of agricultural heaters tested at the FACT in Korea over the past 12 years. Results: The thermal efficiency of agricultural heaters based on the enthalpy method was proposed as a reasonable classification index. The grade levels were proposed in equation form for three types of agricultural heaters: fossil fuel heaters, wood pellet heaters and wood pellet boilers. A reasonable energy efficiency classification of agricultural heaters could be performed using the proposed classification index and grade levels. Conclusions: It is expected that energy saving programs will be extended to agricultural machines in the near future. The classification index and grade levels to rate agricultural heaters for energy efficiency classification were developed and proposed for such near future to come.

The Relative Effects of Feedback Frequency and Specificity of Eco-IVIS on Fuel Efficiency and Workload (에코 드라이빙 피드백 제공 빈도와 구체성이 연비와 작업부하에 미치는 효과)

  • Lee, Kyehoon;Cho, Hangsoo;Oah, Shezeen;Moon, Kwangsu
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.132-138
    • /
    • 2015
  • This study examined the relative effects of feedback frequency and specificity of Eco-IVIS(eco in-vehicle information system) on the fuel-efficiency and workload. Eighty participants randomly assigned into four experimental groups (high frequency/specific, high frequency/global, low frequency/specific, and low frequency/global feedback) and they drove 16.4Km motorway under the each feedback condition. The dependent variable were fuel efficiency and Drive Activity Load Index which measured participants' subjective ratings of driving workload. The results showed that high frequent feedback was more effective for increasing fuel-efficiency than low frequent feedback, however, there was no significant difference of fuel-efficiency between specific and global feedback. Although, overall DALI score was comparable among four experimental conditions, visual demand score was significant higher under the high frequent feedback condition than low frequent feedback.

A Study on the Performance Assessment of Nuclear Fuel Debris Filtration Using the Weighted Mean (가중평균을 이용한 핵연료 이물질 여과성능 평가에 관한 연구)

  • Park, Joon Kyoo;Lee, Seong Ki;Kim, Jae Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.2
    • /
    • pp.149-156
    • /
    • 2017
  • Nuclear fuel requires high reliability and safety and therefore contains debris filtering devices to prevent failure-inducing debris from entering it. The debris filtering performance of nuclear fuel is one of the most important factors for fuel integrity. Therefore, the performance must be evaluated and the measurement must be reasonable. In this study, a calculation method of the comprehensive filtering efficiency using the weighted mean was proposed to establish a standard filtering efficiency index. To confirm the suitability of the proposed method, representative debris specimens were selected and the filtering efficiency with the weighted mean was compared with the efficiency of the arithmetic mean. The weighting factor of the weighted mean was introduced to produce a fair evaluation. In addition, the analysis of the debris filtering mechanism was performed according to the size of debris specimens, and the main dimensions of the filtering feature for commercial nuclear fuel.

Performance Improvement Package Application Effect Analysis - Focused on Airbus 350 Case - (성능향상 패키지 적용 효과 분석 - Airbus 350 기종을 중심으로 -)

  • Jang, Sungwoo;Cho, Yul Hyun;Yoo, Jae Leame;Yoo, Kwang Eui
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.3
    • /
    • pp.44-51
    • /
    • 2021
  • PIP is an abbreviation of 'Performance Improvement Package', which is a package that can improve performance by applying some design changes to existing aircraft. Boeing provides PIP applicable to B777-200, and Airbus provides PIP applicable to A350-900 as standard. PIP provided by Boeing and Airbus is a separate task, but it is expected to reduce fuel consumption by reducing drag through aerodynamic improvements. The PIP applied to the A350-900 includes work such as increasing Winglet Height and re-twisting Outboard Wing. This study is to verify the effect of PIP application of the A350-900 aircraft and use it as basic data for economic analysis. The aerodynamic improvement studies and expected effects of the PIP application were examined, and the actual flight data of the PIP-applied and the non-applied aircraft were compared to confirm the PIP application effect. This paper provides empirical results for the aviation industry on the PIP application efficiency as a method of improving fuel efficiency and reducing carbon emission.

Combustion Characteristics of Cylindrical Premixed Combustor using Liquid Fuel by Self Evaporation (자열증발된 액체연료를 적용한 원통형 예혼합 연소기의 연소특성)

  • Lee, Pil Hyong;Song, Ki Jong;Hwang, Sang Soon
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.3
    • /
    • pp.7-15
    • /
    • 2016
  • The fuel in conventional liquid fuel combustor is atomized by spray method for high efficiency and low emissions. To improve the overall fuel efficiency and lower pollutant emissions in liquid fuel combustion systems, the effective spatial and temporal separation of droplet evaporation from normal spray process is needed. In this paper, the recuperation of high temperature burnt gas for fuel evaporation was proposed to develop a cylindrical premixed combustor. The recuperation process using U shaped tube is effective to evaporate the liquid fuel. The results show that the flame mode is changed into red radiation flame, blue flame and lift off flame with decreasing equivalence ratio as gas fuel combustion mode. In particular, the blue flame is found to be very stable at heating load 9.2 kW and equivalence ratio 0.731. NOx was measured blow 105 ppm ($O_2$ zero base) from equivalence ratio 0.705 to 0.835. CO which is a very important emission index in liquid fuel combustor was observed below 5 ppm ($O_2$ zero base) under the same equivalence region.