• Title/Summary/Keyword: Fuel Control

Search Result 2,135, Processing Time 0.026 seconds

Study on the Steam Line Break Accident for Kori Unit-1 (고리 1호기에 대한 증기배관 파열사고 연구)

  • Tae Woon Kim;Jung In Choi;Un Chul Lee;Ki In Han
    • Nuclear Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.186-195
    • /
    • 1982
  • The steam line break accident for Kori Unit 1 is analyzed by a code SYSRAN which calculates nuclear power and heat flux using the point kinetics equation and the lumped-parameter model and calculates system transient using the mass and energy balance equation with the assumption of uniform reactor coolant system pressure. The 1.4 f $t^2$ steam line break accident is analyzed at EOL (End of Life), hot shutdown condition in which case the accident would be most severe. The steam discharge rate is assumed to follow the Moody critical flow model. The results reveal the peak heat flux of 38% of nominal full power value at 60 second after the accident initiates, which is higher than the FSAR result of 26%. Trends for the transient are in good agreement with FSAR results. A sensitivity study shows that this accident is most sensitive to the moderator density coefficient and the lower plenum mixing factor. The DNBR calculation under the assumption of $F_{{\Delta}H}$=3.66, which is used in the FSAR with all the control and the shutdown assemblies inserted except one B bank assembly and of Fz=1.55 shows that minimum DNBR reaches 1.62 at 60 second, indicating that the fuel failure is not anticipated to occur. The point kinetics equation, the lumped-parameter model and the system transient model which uses the mass and energy balance equation are verified to be effective to follow the system transient phenomena of the nuclear power plants.lear power plants.

  • PDF

Effect of V and Sb on the Corrosion Behavior and Precipitate Characteristics of Zr-based Alloys for Nuclear Fuel Cladding (핵연료 피복관용 Zr합금의 부식거동 및 석출물 특성에 미치는 V, Sb 첨가의 영향)

  • Jeon, Chi-Jung;Kim, Seon-Jin;Jeong, Yong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.8 no.12
    • /
    • pp.1099-1109
    • /
    • 1998
  • To investigate the effect of V and Sb on the corrosion behavior of Zr- based alloys, corrosion tests were performed on 6 kinds of Zr alloys in an autoclave at $360^{\circ}C$ for 100 days. The transition of the corrosion rate occurred in the sample containing 0.1wt.%V after 10 days but did not occur in the samples containing 0.2wt.%V and 0.4wt.%V. The corrosion resistance of V containing alloys increased with increasing V contents from 0.1 to 0.4wt.% and the alloys containing 0.4wt.%V showed the best corrosion resistance. In the ternary alloys containing 0.1wt.%Sb and 0.4wt.%Sb, the corrosion rate increased significantly from the short exposure time. It was observed that the optimal Sb content for corrosion resistance was 0.2wt.%. The size and volume fraction of precipitates increased with increasing V and Sb contents. The superior corrosion resistance was observed in the Zr alloy having precipitate size of 0.11-0.13$\mu\textrm{m}$. From the result of corrosion behavior and the obserbation of precipitates, the optimal size of the precipitate appear to control the electron conduction in the cathodic reaction and play an important role in maintaining a stable oxide microstructure.

  • PDF

Practical Usage of Low-Temperature Metal Catalyst for the Destruction of Volatile Organic Compounds (VOCs) (휘발성 유기화합물(VOCs) 제거를 위한 저온금속촉매 실용화에 관한 연구)

  • Jung, Sung-Chul;Lee, Seung-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.6
    • /
    • pp.397-405
    • /
    • 2012
  • In this study, performance evaluation of newly developed technology for the economical and safe removal of volatile organic compounds (VOCs) coming out from electronic devices washing operation and offensive odor induction materials was made. Metal oxidization catalyst has shown 50% of removal efficiency at the temperature of $220^{\circ}C$. Composite metal oxidization catalyst applied in this study has shown that the actual catalysis has started at the temperature of $100^{\circ}C$. Comprehensive analysis on the catalyst property using Mn-Cu metal oxidization catalyst in the pilot-scale unit was made and the removal efficiency was variable with temperature and space velocity. Full-scale unit developed based on the pilot-scale unit operation has shown 95% of removal efficiency at the temperature of $160^{\circ}C$. Optimum elimination effective rates for the space velocity was found to be $6,000hr^{-1}$. The most appropriate processing treatment range for the inflow concentration of VOCs was between 200 ppm to 4,000 ppm. Catalyst control temperature showed high destruction efficiency at $150{\sim}200^{\circ}C$ degrees Celsius in 90~99%. External heat source was not necessary due to the self-heat reaction incase of VOCs inflow concentration is more than 1,000 ppm. Equipment and fuel costs compared to the conventional RTO/RCO method can be reduced by 50% and 75% respectively. And it was checked when there was poisoning for sulfide and acid gas.

Study on the Thermal Characteristics of Concrete Using Micro Form Admixture (마이크로기포제를 사용한 콘크리트의 열적 특성에 관한 연구)

  • Park, Young Shin;Kim, Jung Ho;Jeon, Hyun Kyu;Seo, Chee Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.101-109
    • /
    • 2013
  • Recently, it is certain that the increase of heating and cooling energy consumption by radical change in climate condition has caused serious problems related to environmental and energy concerns associated with increase of fossil fuel usage and carbon dioxide production as well as global warming. So, various actions to reduce greenhouse gas exhaustion and energy consumption have been prepared by world developed countries. Our government has also been trying to seek energy control methods for houses and buildings by proclaiming political polices on low-carbon green growth and construction and performance standards for environment-friendly housing. The energy consumption by buildings approximately reaches 25% of total korea energy consumption, and the increasing rate of energy consumption by buildings is stiffer than the rate by the other industries. The greatest part in the buildings of the energy consumption is building facade. While lots of research projects for reducing energy consumption of the facade have been conducted, but a few research projects on concrete comprising more than 70% of outsider of buildings has been tried. This research presents here a study to improve the insulation property of structural concrete formed by micro form admixture (MFA) with experimentally reviewing the physical, mechanical and thermal characteristics of the concrete. As the results of this experiment, in the case of concrete mixed with MFA, slump loss has been improved. As the mixing ratio of MFA increases, the compressive strength is decreased and thermal conductivity is increased. Also it was found that water-cement ratio increases, the compressive strength is decreased and thermal conductivity is increased. but, there was not big influence by the change of fine aggregate ratio.

Synthesis of Mesoporous Pt-Au Alloy Electrode by Electrodeposition Method for Direct Methanol Fuel Cell (전기화학적 증착법에 의한 직접 메탄올 연료전지(DMFC)용 메조포러스 백금-금 합금전극제조)

  • Park, Eun-Kyung;Ahn, Jae-Hoon;Kim, Young-Soo;Kim, Kyung-Hwa;Baeck, Sung-Hyeon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.727-731
    • /
    • 2008
  • Mesoporous Pt-Au alloy films were successfully fabricated on ITO-coated glass by electrodeposition method using tri-blockcopolymer (P123) as a templating agent. The electrolyte consisted of 10 mM hydrogen hexachloroplatinate ($H_2PtCl_6$), 10 mM hydrogen tetrachloroaurate ($HAuCl_4$), and proper amount of P123. For comparison, control samples were electrodeposited without $HAuCl_4$ and P123. Film composition was determined by EDS(Energy Dispersive X-ray Spectroscopy), and the mesoporous structure was confirmed by TEM(Transmission Electron Microscopy). SEM(Scanning Electron Microscopy) was utilized to examine surface morphology, and it was observed that the addition of P123 affected the particle growth, resulting in the significant change of surface morphology. Methanol oxidation and CO oxidation were carried out to investigate electrocatalytic activities of synthesized samples. It was observed that the catalytic activity was strongly dependent on the film compositions. Compared with nonporous electrode prepared without P123 templating, mesoporous films prepared with P123 templating showed much higher catalytic activities and stability for both methanol oxidation and CO oxidation. These enhanced electrocatalytic activities were due to the high surface area and facilitated charge transfer of mesoporous films.

Trend of Space Development and Issue (우주개발동향과 주요 이슈)

  • Cho, Hong-Je;Shin, Yong-Do
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.29 no.1
    • /
    • pp.97-126
    • /
    • 2014
  • October 4, 1957 the Soviet Sputnik 1 was launched into space the first time in the history of mankind. After launching, the realm of humankind was expanded to space. Today all countries of the world wage a fierce competition in order to utilize space for various purposes. World powers of space such as United States, Russia, China, and Japan, put reconnaissance satellites and ocean surveillance satellites into orbit, being able to easily see equipment and troops movement on earth. Each country makes efforts to occupy space assets through the militarization of space and expand national interests. Recently private companies or individuals involved in commercial space activities are becoming more prevalent. Thus, in addition to space activities for military purposes, commercial space activities become widespread. Individuals and private companies as well as nations are also involved in space activities. Outer space is not the monopoly of space powers such as the United States and Russia. The whole human race can benefit from free access to space, being the common heritage of mankind. In particular, outer space becomes an indispensable element of military activities and human life. Many countries are now entering space development, putting a lot of budget into new development programs. Republic of Korea also built the Narodo Space Center, starting its space development with budget and manpower. We have to find out ways to use space not only for military purposes but also for commercial space activities that can contribute to the national economy. In addition, through the joint efforts of the international community, we have to make efforts for preservation and peaceful use of space. Various issues relating to space activities and research should be studies in order to contribute to the progress of humanity. Those issues include the definition of outer space, space debris reduction and environmental conservation issues, non-bind measure cooperation - European International Code of Conduct, space law and national legislation related empowerment issues, arms control measures in space, and restrictions on the use of nuclear fuel. We also need to be involved in the discussion of those issues as one of responsible space countries. In addition, we try to find out regional cooperation schemes such as the ESA in the Europe actively. Currently in the Northeast Asia, cooperation bodies led by Japan and China respectively, are operated in the confrontational way. To avoid such confrontation, a new cooperative body needs to be established for cooperation on space exploration and information. The system to allow the exchange of satellite information for early warning of natural disasters needs to be built as well. In addition, efforts to enhance the effectiveness of the relevant international treaties on space, and fill in the blanks in international space laws should be made at the same time. To this end, we have to do a leading role in the establishment of standards such as non-binding measures (resolution) - Code of Conduct, being discussed in the UN and other organizations, and compliance with those standards. Courses in aerospace should be requires in law schools and educational institutes, and professional manpower need to be nurtured. In addition, the space-related technology and policy needs to be jointly studied among the private, public, and military groups, and the cross exchange among them should be encouraged.

Discharge header design inside a reactor pool for flow stability in a research reactor

  • Yoon, Hyungi;Choi, Yongseok;Seo, Kyoungwoo;Kim, Seonghoon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2204-2220
    • /
    • 2020
  • An open-pool type research reactor is designed and operated considering the accessibility around the pool top area to enhance the reactor utilization. The reactor structure assembly is placed at the bottom of the pool and filled with water as a primary coolant for the core cooling and radiation shielding. Most radioactive materials are generated from the fuel assemblies in the reactor core and circulated with the primary coolant. If the primary coolant goes up to the pool surface, the radiation level increases around the working area near the top of the pool. Hence, the hot water layer is designed and formed at the upper part of the pool to suppress the rising of the primary coolant to the pool surface. The temperature gradient is established from the hot water layer to the primary coolant. As this temperature gradient suppresses the circulation of the primary coolant at the upper region of the pool, the radioactive primary coolant rising up directly to the pool surface is minimized. Water mixing between these layers is reduced because the hot water layer is formed above the primary coolant with a higher temperature. The radiation level above the pool surface area is maintained as low as reasonably achievable since the radioactive materials in the primary coolant are trapped under the hot water layer. The key to maintaining the stable hot water layer and keeping the radiation level low on the pool surface is to have a stable flow of the primary coolant. In the research reactor with a downward core flow, the primary coolant is dumped into the reactor pool and goes to the reactor core through the flow guide structure. Flow fields of the primary coolant at the lower region of the reactor pool are largely affected by the dumped primary coolant. Simple, circular, and duct type discharge headers are designed to control the flow fields and make the primary coolant flow stable in the reactor pool. In this research, flow fields of the primary coolant and hot water layer are numerically simulated in the reactor pool. The heat transfer rate, temperature, and velocity fields are taken into consideration to determine the formation of the stable hot water layer and primary coolant flow. The bulk Richardson number is used to evaluate the stability of the flow field. A duct type discharge header is finally chosen to dump the primary coolant into the reactor pool. The bulk Richardson number should be higher than 2.7 and the temperature of the hot water layer should be 1 ℃ higher than the temperature of the primary coolant to maintain the stability of the stratified thermal layer.

Development of a Decision Making Model for Construction Management in LNG Plant Construction - Focused on Construction Stage - (LNG 공사의 건설사업관리 의사결정지원모델 개발 - 시공단계 중심 -)

  • Park, Hwan Pyo;Han, Jae Goo;Chin, Kyung Ho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.3
    • /
    • pp.47-57
    • /
    • 2014
  • LNG plant projects tend to be implemented in overseas owing to its characteristics, so their project management scheme is somewhat different from those of general projects. Value chain in a LNG plant project includes exploration/production of gases, physical liquefaction/chemical conversion processes, transportation and storage. Key factors in the chain include liquefaction process (including ultra-low temperature liquefaction) to convert natural gas into liquid materials or fuel, and Front End Engineering Design (FEED) package, as well as Engineering, Procurement and Construction (EPC) technology comprising control, operation and construction. Success of a complex LNG plant project implemented in overseas depends on decision-making process in project management. Accordingly, to develop a decision-making model in of plant construction, the study extracted none factors in project management by EPC stage and assessed importance of each factor. The result showed that items in both project management and project risk management are important. Especially, the study developed a decision-making model in the construction stage of a LNG plant project based on the project management factors and importance assessment. The developed decision-making model would lay groundwork in building a decision-making system in construction stage of project management.

A Study on the Changes in Heavy Metal Emissions when Using Mixed Fuel in a Thermal Power Plant (화력발전소의 혼합연료 사용에 따른 중금속 배출량 변화 연구)

  • Song, Youngho;Kim, Ok;Park, Sanghyun;Lee, Jinheon
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.1
    • /
    • pp.63-75
    • /
    • 2018
  • Objectives: The aim of this research is to explore the total heavy metals from a coal-fired power plant burning bituminous coal with wood pellets due to the implementation of the Renewable Portfolio Standard policy (RPS, 10% of electricity from renewable energy resources by 2023). Methods: The research was carried out by collecting archival data and using the USEPA's AP-42 & EMEP/EEA compilation of emission factors for use in calculating emissions. The Monte Carlo method was also applied for carrying out the calculations of measurement uncertainty. Results: In this paper, the results are listed as follows. Sb was measured at 110 kg (2015) and calculated as 165 kg (2019) and 201 kg (2023). Cr was measured at 1,597 kg (2015) and calculated as 1,687 kg (2019) and 1,728 kg (2023). Cu was measured at 2,888 kg (2015) and calculated as 3,133 kg (2019) and 3,264 kg (2023). Pb was measured at 2,580 kg (2015) and calculated as 2,831 kg (2019) and 2,969 kg (2023). Mn was measured at 3,011 kg (2015) and calculated as 15,034 kg (2019) and 23,014 kg (2023). Hg was measured at 510 kg (2015) and calculated as 513 kg (2019) and 537 kg (2023). Ni was measured at 1,720 kg (2015) and calculated as 1,895 kg (2019) and 1,991 kg (2023). Zn was measured at 7,054 kg (2015) and calculated as 9,938 kg (2019) and 11,778 kg (2023). Se was measured at 7,988 kg (2015) and calculated as 7,663 kg (2019) and 7,351 kg (2023). Conclusion: This shows that most heavy metals would increase steadily from 2015 to 2023. However, Se would decrease by 7.9%. This analysis was conducted with EMEP/EEA's emission factors due to the limited emission factors in South Korea. Co-firewood pellets in coal-fired power plants cause the emission of heavy metals. For this reason, emission factors at air pollution control facilities would be presented and the replacement of wood pellets would be needed.

A Study on the Application of Domestic ferry to a Battery Propulsion Ship connected with Photovoltaic System (태양광 발전시스템이 연계된 배터리 전기추진선박의 국내 유람선 적용에 관한 연구)

  • Hwang, Jun-Young;Jeon, Cheol-Hwan;Jeon, Hyeon-Min;Kim, Jong-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.945-952
    • /
    • 2019
  • The International Maritime Organization (IMO) adopted the International Convention on the Control of Ships' Air Pollutants and Discharge as it became interested in environmental issues such as global warming and air pollution. In addition, a special bill on the improvement of air quality, including in port areas, has recently been enacted in Korea to reduce the amount of fine dust generated. As part of such fine dust reduction measures, feasibility studies have been underway on converting diesel engines into battery electric propulsion systems that do not cause fine dust and emissions. Since the battery electric propulsion system can easily utilize renewable energy sources, and does not generate exhaust gas due to combustion of fuel, small coastal ferries with battery electric propulsion systems that use renewable energy have been operating in Europe and the U.S. for several years. However, they have not been introduced in Korea. Therefore, in this study, we selected small coastal ferries in Korea as target ferries, and performed simulations to study the applicability of electric propulsion with batteries linked to solar power systems. Based on the results, we want to confirm the applicability of battery electric propulsion.