• Title/Summary/Keyword: Fuel Cell Temperature

Search Result 933, Processing Time 0.029 seconds

Measurement and Analysis of Open Circuit Potential in PEFC (고분자 전해질 연료전지의 개방회로 전위차 측정 및 분석)

  • 김홍건;김유신;김홍열
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.134-138
    • /
    • 2004
  • The discrepancies between theoretical values and measured data of PEFC(Proton Exchange Fuel Cell) is carried out for the machine tool power generation. Rudimental approach of theoretical fuel cell open circuit potential using Gibbs free energy is employed for the examination of PEFC module. The stack temperature, stack voltage and stack current are measured during the operation of PEFC module. It is found that stack voltage and current values show the pronounced discrepancy with the results calculated by Gibbs free energy approach. It is analysed that the discrepancy is due to activation polarization, concentration overvoltage and ohmic overvoltage.

  • PDF

Investigation on the cold start characteristics of PEMFC using Axiomatic Design approach (Axiomatic Design 기법을 이용한 연료전지 냉시동 특성 개선에 관한 연구)

  • Suh, Jung-Do;Lee, Sung-Ho;Ahn, Byung-Ki;Lim, Tae-Won;Yu, Ha-Na;Lee, Dai-Gil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.17-20
    • /
    • 2008
  • Cold start of a fuel cell system is a major obstacle should be overcome as to commercialize it, especially for passenger vehicle applications. However, the cold start characteristics is so complicated since it involves various phenomenon such as ice-blocking in GDL, ionic conductivity in membrane affected by water activity with phase change, heat transfer through components such as bipolarplates or endplates, electro-chemical reactions affected by circumferential temperature and humidity as well. Axiomatic design provides a systematic method to investigate the complex phenomenon although it was developed as a methodology to establish logical design procedure by Nam P. Suh in 1990s. This paper presents a framework to approach the complex cold start problem using Axiomatic Design which features simplifying a problem through hierarchical decomposition and decoupling from the view of functional requirements and design parameters.

  • PDF

Electrode Performance by Accelation Testing in Phosphoric Acid Fuel Cell (가속 시험법에 의한 연료전지 전극 특성)

  • Kim, C.S.;Song, R.H.;Shin, D.R.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1409-1412
    • /
    • 1994
  • The electrodes for Phosphoric Acid Fuel Ceil were fabricated as a condition of PTFE contents in electrocatalyst layer and sintering temperature in the range of 25 -- 65 wt% and 310 -- $390^{\circ}C$, respectively. For the fabricated electrode, the accelation testing of cathode half cell at open circuit potential was investigated. While the performance of electrode showed maximum at the low level of PTFE contents in the initial stage of accelation testing, the maximum performance was shifted to higher PTFE contents of 45wt% after 24hrs accelation testing.

  • PDF

A Study on the Design and Efficiency of Membrane-Electrolyte Assembly in PEFC (PEFC 막-전극 접합체의 설계 및 효율에 관한 연구)

  • Kim H. G.;Kim Y. S.;Kim H. Y.;Yang Y. M.;Nah S. C.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.180-184
    • /
    • 2005
  • An experimental study is performed to evaluate the performance and the efficiency by humidifying MEA and by making the double-tied catalyst layers in a fuel cell system which is taken into account the physical and thermal concept. An electrical output produced by PEFC(polymer Electrolyte Fuel Cell) is measured to assess the performance of the stack and the efficiency is also evaluated according to the different situation in which is placed with and without the humidification of MEA (Membrane Electrolyte Assembly). Subsequently, It is found that the measured values of stack voltage and current are influenced by the stack temperature, humidification, and the double-tied catalyst layers which gives more enhanced values to apply for electric units.

  • PDF

Performance Evaluation on MEA with Double Layered Catalyst (이중구조 촉매층으로 구성된 MEA의 성능 평가)

  • Kim, Hong-Gun;Kwac, Lee-Ku;Kang, Sung-Soo;Kang, Young-Woo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.55-58
    • /
    • 2006
  • An experimental study is performed to evaluate the performance and the efficiency by humidifying MEA and by making the double-layered catalyst in a fuel cell system which is taken into account the physical and thermal concept. An electrical output produced by PEMFC(Polymer Exchange Membrane Fuel Cell) is measured to assess the performance of the stack and the efficiency is also evaluated according to the different situation in which is placed with and without the humidification of MEA(Membrane Electrolyte Assembly). Subsequently, It is found that the measured values of MEA voltage and current are influenced by the MEA temperature, humidification, and the double-layered catalyst which gives more enhanced values to apply for electric units.

  • PDF

Production of Fine Metal Oxide Particles in Supercritical Water (초임계수를 이용한 금속산화물 미세입자 제조)

  • Lee, Joo-Heon;Park, Young-Woo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.173-176
    • /
    • 1999
  • The production of fine metal oxide particles in supercritical water has been studied. Cobalt nitrate solution and manganese nitrate solution have been selected as model solutions for metal salt aqueous solution and the particles of cobalt oxide and manganese oxide have been produced. It was observed that the production of fine metal oxide particles in supercritical water was feasible and the dehydration rate was remarkably high in supercritical water. In spite of a short residence time (3~100 seconds), fine particles ($0.5{\sim}2{\mu}m$) have been produced. In the supercritical water process, the temperature of mixer had a significant effect on particle size and size distribution. It was observed that a change in reaction temperature resulted in the control of particle size.

  • PDF

Numerical Analysis of the Melting Process of Ice Using Plate Heaters with Constant Heat Flux (일정 열유속 조건의 판형 히터에 의한 해빙과정의 수치해석)

  • Kim, Hark-Koo;Jeong, Si-Young;Hur, Nahm-Keon;Lim, Tae-Won;Park, Yong-Sun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.6
    • /
    • pp.434-440
    • /
    • 2007
  • One of the cold start problems of a FCV is the freezing of the water in the water tank when a FCV is not in operation and the surrounding temperature drops below $0^{\circ}C$. The ice in the tank should be melted as quickly as possible for a satisfactory operation of fuel cell vehicles. In this study, the melting process for the constant heat fluxes of the plate heaters was numerically calculated in the 2-D model of the tank and plate heaters. The enthalpy method and FVM code was used for this analysis. The changes of the temperature with heat fluxes and the heat transfer area could be investigated. The energy balance error was found to increase with the heat flux. From this numerical analysis, the proper heat flux value and some important design factors relating local overheating and pressurization of the water tank could be examined.

Experimental Analysis of Mass Transfer Capability of Membrane Humidifier for PEMFC (이온 교환막 연료전지용 막 가습기의 물질전달 성능 실험)

  • Tak, Hyun-Woo;Kim, Kyung-Taek;Im, Seok-Yeon;Yu, Sang-Seok
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.1
    • /
    • pp.19-25
    • /
    • 2012
  • The efficiency and life time of the Proton Exchange Membrane fuel cell (PEMFC) system is critically affected by incoming gas with humidity which should be maintained properly at normal operating conditions. Typically, incoming gas of automotive fuel cell is humidified by external humidifier but the characteristics of device is rarely reported. In this study, characteristics of water transfer in the membrane humidifiers have been experimentally investigated for flow rates of gas and for different flow arrangement under steady state condition. At first, capability of mass transfer through the membrane is examined at constant temperature. Then, the temperature distribution effect on the capability of mass transfer is tested over various inlet conditions. In summary, this research presents the mass transfer capability of hydrophilic membrane over various operating conditions.

Fuel Cell Catalyst Optimization by Six Sigma (Six 시그마를 이용한 연료전지 촉매구조의 최적화)

  • Kim, Se-Hyun;Kim, Sun-Hoe
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.8
    • /
    • pp.468-474
    • /
    • 2011
  • Reducing agent was used as process variable for Pt catalyst production process. By using six sigma the optimum operating variables condition for particle size and ICP yield were deduced. With the help of fractional factorial design the major variables were reduction temperature and process time. Also, the optimum number of reduction process, reduction temperature, quantity of reducing agent and process time were 1, $67-88^{\circ}C$, 0.5 ml and 10minutes, respectively.

Fabrication of membrane electrode assemblies by low temperature decal methods (저온 전사법을 이용한 고성능 MEA 제조)

  • Cho, Jae-Hyoung;Kim, Jang-Mi;Prabhuram, Joghee;Hwang, Sang-Youp;Ahn, Dong-June;Ha, Heung-Yong;Kim, Soo-Kil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.37-39
    • /
    • 2008
  • 본 연구에서는 저온 데칼 전사법을 이용하여 막 전극 접합체(Membrane Electrode Assembly, MEA)를 제조하였다. 제조된 MEA는 직접 메탄올 연료 전지(Direct Methanol Fuel Cell, DMFC)를 이용하여 성능 테스트를 하였다. 저온 데칼 전사법은 $140^{\circ}C$의 낮은 온도에서 촉매 층을 데칼 기판에서 멤브레인으로 전사시키고, 전사된 촉매 층의 표면에 형성되는 것으로 알려진 이오노머 스킨 층의 형성을 막기 위해 이오노머/촉매/카본/기판의 구조로 되어 있는 데칼 기판을 사용한다. 저온 데칼 전사법으로 제조 된 카본 층이 있는 MEA의 DMFC 성능이 카본 층이 없이 데칼 전사법으로 제조된 MEA나 전통적인 고온 데칼 전사법으로 제조된 MEA, 또는 직접 스프레이 코팅법으로 제조된 MEA의 성능보다 높게 나온 것을 알 수 있다. 저온 데칼 전사법으로 제조된 MEA의 DMFC 성능이 향상된 것은 촉매 층 위에 이오노머 스킨이 형성되지 않아 반응물의 확산이 원활하게 이루어지기 때문이다. 이를 위한 특성 분석으로 EIS, CV를 측정하였다.

  • PDF