• Title/Summary/Keyword: Fuel Cell Temperature

Search Result 933, Processing Time 0.028 seconds

Characteristics of $LaCrO_3$-Dispersed Cr Alloy for Metallic Interconnector of Solid Oxide Fuel Cell (고체 산화물 연료전지 금속 연결재용 $LaCrO_3$가 분산된 Cr 합금의 특성 연구)

  • Jeon, Kwang-Sun;Song, Rak-Hyun;Shin, Dong-Ryul
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.8
    • /
    • pp.570-576
    • /
    • 1999
  • $LaCrO_3$-dispersed Cr alloys for metallic interconnector of solid oxide fuel cell have been studied as function of $LaCrO_3$ content in the range of 5 to 25 vol.% in order to examine the electric conductivity, the oxidation property and the thermal expansion behavior of these alloys. The $LaCrO_3$-dispersed Cr alloys showed high electrical conductivities of $3~5\times10^4$ S/cm at room temperature, and as the $LaCrO_3$content increased the conductivity decreased slightly. During the cyclic oxidation test at $1100^{\circ}C$, the weight change of the Cr alloys decreased with increasing number of oxidation cycle except first cycle, which is attributed to the vaporization of the oxide scale. More addition of the $LaCrO_3$ content reduced also the weight change of the Cr alloys. These mean that the oxide scale formed at the surface of the Cr alloy becomes stable with increasing number of oxidation cycle and$LaCrO_3$ content. The measured thermal expansion of the Cr alloy was well fitted to that of 8 mol% $Y_2O_3$-stabilized $ZrO_2$ electrolyte. These results demonstrate that $LaCrO_3$-dispersed Cr alloy is a useful material for metallic interconnector of solid oxide fuel cell.

  • PDF

The performance of PEMFC during exposure to simultaneous sulfur impurity poisoning on cathode and anode (공기극과 연료극의 복합 황불순물에 의한 고분자 전해질막 연료전지의 성능에 미치는 영향)

  • Lee, Soo;Jin, Seok-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.594-598
    • /
    • 2012
  • Polymer electrolyte membrane fuel cell(PEMFC) performance degrades seriously when sulfur dioxide and hydrogen sulfide are contaminated in the fuel gas at anode and air source at cathode, respectively. This paper reveals the effect of the combined sulfur impurity poisoning on both PEMFC cathode and anode parts through measuring electrical performance on single FC operated under 1 ppm to 10 ppm impurity gases. The severity of $SO_2$ and $H_2S$ poisoning depended on concentrations of impurity gases under optimum operating conditions($65^{\circ}C$ of cell temperature and 100 % relative humidity). Sulfur adsorption occured on the surface of Pt catalyst layer on MEA. In addition, MEA poisoning by impurity gases were cumulative. After four consecutive poisonings with 1, 3, 5 to 10 ppm, the fuel cell performance of PEMFC was decrease upto 0.54 V(76 %) from 0.71 V.

Two-Phase Flow Analysis of The Hydrogen Recirculation System for Automotive Pem Fuel Cell (자동차용 고분자 연료전지 수소 재순환 시스템의 이상 유동해석)

  • Kwag, Hyun-Ju;Chung, Jin-Taek;Kim, Jae-Choon;Kim, Yong-Chan;Oh, Hyung-Seuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.6
    • /
    • pp.446-454
    • /
    • 2008
  • The purpose of this paper is to analyze two-phase flows of the hydrogen recirculation system. Two-phase flow modeling is one of the great challenges in the classical sciences. As with most problems in engineering, the interest in two-phase flow is due to its extreme importance in various industrial applications. In hydrogen recirculation systems of fuel cell, the changes in pressure and temperature affect the phase change of mixture. Therefore, two-phase flow analysis of the hydrogen recirculation system is very important. Two-phase computation fluid dynamics (CFD) calculations, using a commercial CFD package FLUENT 6.2, were employed to calculate the gas-liquid flow. A two-phase flow calculation was conducted to solve continuity, momentum, energy equation for each phase. Then, the mass transfer between water vapor and liquid water was calculated. Through an experiment to measure production of liquid water with change of pressure, the analysis model was verified. The predictions of rate of condensed liquid water with change of pressure were within an average error of about 5%. A comparison of experimental and computed data was found to be in good agreement. The variations of performance, properties, mass fraction and two-phase flow characteristic of mixture with resepct to the fuel cell power were investigated.

Experimental Study of Polymer Electrolyte Membrane Fuel Cell Performance Under Low Operating Temperatures (상온 작동 환경하에서의 고분자 전해질막 연료전지의 성능에 대한 실험적 연구)

  • Cha, Dowon;Kim, Bosung;Kim, Yongchan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.8
    • /
    • pp.687-693
    • /
    • 2014
  • In this study, the performance characteristics of a polymer electrolyte membrane fuel cell (PEMFC) were investigated at low operating temperatures under steady-state and dynamic conditions. The performance of the PEMFC was analyzed according to the external humidifying rate and air stoichiometry. The ohmic resistance was also investigated using EIS tests. At the operating temperature of $35^{\circ}C$, voltage fluctuation occurred to a greater degree compared to that at $45^{\circ}C$. Therefore, it was found that the air stoichiometry should be higher than 2.5 for the stable operation of the fuel cell. In addition, the relative humidity of the reactant gases should be higher than 60 to reduce the ohmic resistance.

A Design of the Cooling Channel in the Bipolar Plate of PEMFC Using Experimental Design Method (실험설계법을 이용한 연료전지 분리판 냉각채널 설계)

  • Zhang, Xia;Kwon, Oh-Jung;Oh, Byeong Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.5
    • /
    • pp.545-552
    • /
    • 2015
  • The heat generation in PEMFC is proportional to the electrical power output. Therefore, when the fuel cell produced the maximum output, the maximum heat was generated. In order to maintain the performance of the fuel cell, thermal management is as important as pressure and humidity conditions of the reactive gas. In this study, considering the thermal management for the maximum output operation, the optimal cooling channel design specifications of bipolar plate are found for the highest cooling performance. In the current bipolar plate research, many studies focused on analyzing various factors individually but there is no more study on the interaction between design factors. In this study, the heat transfer was simulated by COMSOL Multiphysics with the main design factors which are designated shape, width and rib length. One of the experimental design methods, general full factorial design method, was used to analyze the main factor and interaction on average temperature and maximum temperature for the design specification of fuel cell bipolar plate. When analysis result shows that all of these three factors are highly important, it can confirm that the interaction occurs between the factors.

Performance Evaluation of a $CO_2$ Heat Pump System for Fuel Cell Vehicles (연료전지 자동차용 이산화탄소 열펌프 시스템의 성능평가)

  • Kim, Sung-Chul;Park, Jong-Chul;Kim, Min-Soo;Won, Jong-Phil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.37-44
    • /
    • 2008
  • The global warming potential (GWP) of $CO_2$ refrigerant is 1/1300 times lower than that of R134a. Furthermore, the size and weight of the automotive heat pump system can decrease because $CO_2$ operates at high pressure with significantly higher discharge temperature and larger temperature change. The presented $CO_2$ heat pump system was designed for both cooling and heating in fuel cell vehicles. In this study, the performance characteristics of the heat pump system were analyzed for heating, and results for performance were provided for operating conditions when using recovered heat from the stack coolant. The performance of the heat pump system with heater core was compared with that of the conventional heating system with heater core and that of the heat pump system without heater core, and thus the heat pump system with heater core showed the best performance among the selected heating systems. On the other hand, the heating performance of two different types of coolant/air heat pump systems with heater core was compared each other at various coolant inlet temperatures. Furthermore, to use exhausted thermal energy through the radiator, experiments were carried out by changing the arrangement of a radiator and an outdoor evaporator, and quantified the heating effectiveness.

Nano particle size control of Pt/C catalysts manufactured by the polyol process for fuel cell application (폴리올법으로 제조된 Pt/C 촉매의 연료전지 적용을 위한 나노 입자 크기제어)

  • Joon Heo;Hyukjun Youn;Ji-Hun Choi;Chae Lin Moon;Soon-Mok Choi
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.6
    • /
    • pp.437-442
    • /
    • 2023
  • This research aims to enhance the efficiency of Pt/C catalysts due to the limited availability and high cost of platinum in contemporary fuel cell catalysts. Nano-sized platinum particles were distributed onto a carbon-based support via the polyol process, utilizing the metal precursor H2PtCl6·6H2O. Key parameters such as pH, temperature, and RPM were carefully regulated. The findings revealed variations in the particle size, distribution, and dispersion of nano-sized Pt particles, influenced by temperature and pH. Following sodium hydroxide treatment, heat treatment procedures were systematically executed at diverse temperatures, specifically 120, 140, and 160 ℃. Notably, the thermal treatment at 140 ℃ facilitated the production of Pt/C catalysts characterized by the smallest platinum particle size, measuring at 1.49 nm. Comparative evaluations between the commercially available Pt/C catalysts and those synthesized in this study were meticulously conducted through cyclic voltammetry, X-ray diffraction (XRD), and field-emission scanning electron microscopy-energy dispersive X-ray spectroscopy (FE-SEM EDS) methodologies. The catalyst synthesized at 160 ℃ demonstrated superior electrochemical performance; however, it is imperative to underscore the necessity for further optimization studies to refine its efficacy.

A Study on the Effect of Coal Properties on the Electrochemical Reactions in the Direct Carbon Fuel Cell System (석탄 물성에 따른 직접탄소 연료전지의 전기화학 반응 특성 연구)

  • Ahn, Seong-Yool;Eom, Seong-Yong;Rhie, Young-Hoon;Moon, Cheor-Eon;Sung, Yon-Mo;Choi, Gyung-Min;Kim, Duck-Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.10
    • /
    • pp.1033-1041
    • /
    • 2012
  • Performance evaluation of a direct carbon fuel cell (DCFC) was conducted according to coals and a graphite particle. Several fuel properties such as thermal reactivity, textural structure, gas adsorption characteristic, and functional groups on the surface of fuels were investigated and their effects on electrochemistry were discussed. The strong carbon structure inside of fuels led the rapid potential decreasing in high current density region, because it caused small surface area and low pore volume. The functional groups on the surface were related to the low current density region. The maximum current density and power density of fuels were affected by the total carbon content in fuels. The effect of operating conditions such as stirring rate and operating temperature was investigated in this study.

Operational Characteristics of Methanol Reformer for the Phosphoric Acid Fuel Cell System (인산형 연료전지용 메탄올 연료개질기의 운전 특성)

  • 정두환;신동열;임희천
    • Journal of Energy Engineering
    • /
    • v.2 no.2
    • /
    • pp.200-207
    • /
    • 1993
  • A methanol reformer was designed and fabricated using a CuO-ZnO low temperature shift catalyst, and its operation characteristics have been studied for the phosphoric acid fuel cell (PAFC) power generation system. The type of reactor was annular Methanol was consumed both for heating and for reforming fuel. Contents of carbon monoxide produced from the reformer increased as the reaction temperatures increased, but decreased as the mole ratios of water to methanol(H$_2$O/CH$_3$OH) increased. At steady state operating conditional, temperature profile of the catalytic reactor of the reformer was well coincide with the model equation, and it took 50 minutes from start to the rated condition of the reformer. When the system was operated at 4/4 and 1/4 of load, thermal efficiencies of the system were 72.3% and 77%, respectively. When the PAFC system was operated with reformed gas in the range of 62 V-37.6 V and 0-147 A, the trend of I-V curve showed a typical fuel tell characteristic. At steady state condition, the flow rates of reforming and combustion methanol were 88.1 mol/h and 50.1 mol/h, respectively.

  • PDF

Fabrication of Solid Oxide Fuel Cells with Electron Beam Physical Vapor Deposition: I. Preparation of Thin Electrolyte Film of YSZ (전자빔 물리증착을 이용한 고체 산화물 연료전지의 제조 : I. YSZ 박막 전해질의 제조)

  • Kim, Hyoungchul;Koo, Myeong-Seo;Park, Jong-Ku;Jung, Hwa-Young;Kim, Joosun;Lee, Hae-Weon;Lee, Jong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.2 s.285
    • /
    • pp.85-91
    • /
    • 2006
  • Electron Beam Physical Vapor Deposition (EB-PVD) was applied to fabricate a thin film YSZ electrolyte with large area on the porous NiO-YSZ anode substrate. Microstructural and thermal stability of the as-deposited electrolyte film was investigated via SEM and XRD analysis. In order to obtain an optimized YSZ film with high stability, both temperature and surface roughness of substrate were varied. A structurally homogeneous YSZ film with large area of $12\times12\;cm^2$ and high thermal stability up to $900^{\circ}C$ was fabricated at the substrate temperature of $T_s/T_m$ higher than 0.4. The smoother surface was proved to give the better film quality. Precise control of heating and cooling rate of the anode substrate was necessary to obtain a very dense YSZ electrolyte with high thermal stability, which affords to survive after post heat treatment for fabrication a cathode layer on it as well as after long time operation of solid oxide fuel cell at high temperature.