• Title/Summary/Keyword: Fuel Cell Temperature

Search Result 933, Processing Time 0.039 seconds

The Characteristics of HI Decomposition using Pt/Al2O3 Catalyst Heat Treated in Air and Hydrogen Atmosphere (공기 및 수소 분위기에서 열처리 된 Pt/Al2O3 촉매의 HI분해반응 특성)

  • Park, Eun Jung;Ko, Yun Ki;Park, Chu Sik;Kim, Chang Hee;Kang, Kyoung Soo;Cho, Won Chul;Jeong, Seong Uk;Bae, Ki Kwang;Kim, Young Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.3
    • /
    • pp.219-226
    • /
    • 2014
  • In HI decomposition, $Pt/Al_2O_3$ has been studied by several researchers. However, after HI decomposition, it could be seen that metal dispersion of $Pt/Al_2O_3$ was greatly decreased. This reason was expected of platinum loss and sintering, which platinum was aggregated. Also, this decrease of metal dispersion caused catalytic deactivation. This study was conducted to find the condition to minimize platinum sintering and loss. In particular, heat treatment atmosphere and temperature were examined to improve the activity of HI decomposition reaction. First of all, although $Pt/Al_2O_3$ treated in hydrogen atmosphere had low platinum dispersion between 13 and 18%, it was shown to suitable platinum form that played an important role in improving HI decomposition reaction. Oxygen in the air atmosphere made $Pt/Al_2O_3$ have high platinum dispersion even 61.52% at $500^{\circ}C$. Therefore, in order to get high platinum dispersion and suitable platinum form in HI decomposition reaction, air heat treatment at $500^{\circ}C$ was needed to add before hydrogen heat treatment. In case of 5A3H, it had 51.13% platinum dispersion and improved HI decomposition reaction activity. Also, after HI decomposition reaction it had considerable platinum dispersion of 23.89%.

Life Time Prediction of Rubber Gasket for Fuel Cell through Its Acid-Aging Characteristics

  • Kim, Mi-Suk;Kim, Jin-Hak;Kim, Jin-Kuk;Kim, Seok-Jin
    • Macromolecular Research
    • /
    • v.15 no.4
    • /
    • pp.315-323
    • /
    • 2007
  • The present manuscript deals with the prediction of the lifetime of NBR compound based rubber gaskets for use as fuel cells. The material was investigated at 120, 140 and $160^{\circ}C$, with aging times from 3 to 600 h and increasing $H_2SO_4$ concentrations of 5, 6, 7 and 10 vol%. Both material and accelerated acid-heat aging tests were carried out to predict the useful life of the NBR rubber gasket for use as a fuel cell stack. To investigate the effects of acid-heat aging on the performance characteristics of the gaskets, the properties of the NBR rubber, such as crosslink density and elongation at break, were studied. The hardness of the NBR rubber was found to decrease with decreasing acid concentration at both $120\;and\;140^{\circ}C$, but at $160^{\circ}C$, the hardness of the NBR rubber increased abruptly in a very short time at different acid concentrations. The tensile strength and elongation at break were found to decrease with increases in both the $H_2SO_4$ concentration & temperature. The observed experimental results were evaluated using the Arrhenius equation.

A Study on Bio-ethanol Production from Fruit Wastes (과일폐기물을 이용한 바이오에탄올 생산에 관한 연구)

  • Park, Se-Joon;Do, Yun-Ho;Choi, Jeong-Sik;Yoon, Young-Hoon;Cha, In-Su
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.2
    • /
    • pp.142-150
    • /
    • 2009
  • This paper presents bio-ethanol production from fruit wastes as it possibly alternate fossil fuel in the future. To illustrate the component ratio in exocarps of fruit wastes such as pears, apples, and persimmons, the amount of moisture, lignin, $\alpha$, $\beta$, $\gamma$-cellulose, and ash content were respectively examined by the ingredient analysis. Also, the amount of the glucose obtained from the enzyme hydrolysis using the axocarps was investigated. It was found in our results that the energy efficient process requires different temperature conditions for the saccharification step($50^{\circ}C$ and the fermentation step($30^{\circ}C$ in ethanol synthesis.

Fabrication Characteristics and Performance Evaluation of a Large Unit Cell for Solid Oxide Fuel Cell (고체산화물연료전지용 대면적 단위전지 제조특성 및 성능평가)

  • Shin, Y.C.;Kim, Y.M.;Oh, I.H.;Kim, H.S.;Lee, M.S.;Hyun, S.H.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.13-16
    • /
    • 2008
  • Solid oxide fuel cell(SOFC) is an electrochemical energy conversion system with high efficiency and low-emission of pollution. In order to reduce the operating temperature of SOFC system under $800^{\circ}C$, the thickness reduction of YSZ electrolyte to be as thin as possible, e.g., less than 10 ${\mu}m$ are considered with the microstructure control and optimum design of unit cell. Methods for reducing the thickness of YSZ electrolyte have been investigated in coin cell. Moreover, a large unit cell($8cm{\times}8cm$) for SOFC was fabricated using an anode-supported electrolyte assembly with a thinner electrolyte layer, which was prepared by a tape casting method with a co-sintering technique. we studied the design factors such as active layer, electrolyte thickness, cathode composition, etc,. by the coin type of unit cell ahead of the fabrication process of a large unit cell and also reviewed about the evaluation technique of a large size unit cell such as interconnect design, sealing materials and current collector and so forth. Electrochemical evaluations of the unit cells, including measurements such as power density and impedance, were performed and analyzed. Maximum power density and polarization impedance of coin cell were 0.34W/$cm^2$ and $0.45{\Omega}cm^2$ at $800^{\circ}C$, respectively. However, Maxium power density of a large unit cell($5cm{\times}5cm$) decreased to 0.21W/$cm^2$ at $800^{\circ}C$ due to the increase of ohmic resistance. However, It was found that the potential value of a large unit cell loaded by 0.22A/$cm^2$ showed 0.76V at 100hrs without the degradation of unit cell.

  • PDF

Experiments on PEMFC performance enhancement by pulsating cathode flow

  • Han, Hun-Sik;Kim, Ki-Woong;Kim, Yun-Ho;Kim, Seo-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.542-545
    • /
    • 2008
  • Experiments have been performed to investigate effects of pulsating cathode flow on a 10-cell proton exchange membrane fuel cell (PEMFC) stack. For all the experiments, the flow rate, temperature and relative humidity of hydrogen at the anode inlet are fixed. The effects of the pulsating frequency, amplitude and flow rate at the cathode inlet on performance of 10-cell PEMFC are examined. The polarization and power curves show that the power output and limiting current is substantially increased when the pulsating component is added to cathode flow channel. The maximum power output increases by up to 38% and enhancement of the overall performance is more pronounced at lower flow rate region.

  • PDF

Characteristics of DMFC Using High Porous Active Carbon as an Uncatalysed Diffusion Layer in Anode Electrode

  • Jung, Doo-Hwan;Shin, Dong-Ryul
    • Carbon letters
    • /
    • v.1 no.1
    • /
    • pp.27-30
    • /
    • 2000
  • Performance of direct methanol fuel cell using high porous active carbon as an uncatalysed diffusion layer in anode (composite electrode) has been evaluated. Effects of porous active carbon in anode were investigated by galvanostatic method and Fourier Transform Infrared spectroscopy. The single cell was operated with 2.5 M methanol at temperature of $80-120^{\circ}C$ and showed performance of $210-510\;mA/cm^2$ at 0.4V. By replacing conventional electrode with composite electrode, the increment of $290\;mA/cm^2$ in current density was obtained at $90^{\circ}C$and 0.4V. The potential decay of the single cell was about 14.5% for 20 days operation.

  • PDF

An Experimental Study on the Characteristics of Electrochemical Reactions of RDF/RPF in the Direct Carbon Fuel Cell (직접탄소 연료전지에서 RDF 및 RPF의 전기화학반응 특성에 관한 실험적 연구)

  • Ahn, Seong Yool;Rhie, Young Hoon;Eom, Seong Yong;Sung, Yeon Mo;Moon, Cheor Eon;Kang, Ki Joong;Choi, Gyung Min;Kim, Duck Jool
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.513-520
    • /
    • 2012
  • The electrochemical reaction of refuse derived fuel (RDF) and refuse plastic/paper fuel (RPF) was investigated in the direct carbon fuel cell (DCFC) system. The open circuit voltage (OCV) of RPF was higher than RDF and other coals because of its thermal reactive characteristic under carbon dioxide. The thermal reactivity of fuels was investigated by thermogravimetric analysis method. and the reaction rate of RPF was higher than other fuels. The behavior of all sample's potential was analogous in the beginning region of electrochemical reactions due to similar functional groups on the surface of fuels analyzed by X-ray Photoelectron Spectroscopy experiments. The potential level of RDF and RPF decreased rapidly comparing to coals in the next of the electrochemical reaction because the surface area and pore volume investigated by nitrogen gas adsorption tests were smaller than coals. This characteristic signifies the contact surface between electrolyte and fuel is restricted. The potential of fuels was maintained to the high current density region over 40 $mA/cm^2$ by total carbon component. The maximum power density of RDF and RPF reached up to 45~70% comparing to coal. The obvious improvement of maximum power density by increasing operating temperature was observed in both refuse fuels.

A Study on Contamination of Hydrogen Permeable Pd- based Membranes (Pd 계열 수소 분리막의 오염에 관한 연구)

  • Han, Jonghee;Yoon, Sung Pil;Nam, Suk Woo;Lim, Tae-Hoon;Hong, Seong-Ahn;Kim, Jinsoo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.1
    • /
    • pp.17-23
    • /
    • 2003
  • $H_2$ permeation flux though a $100{\mu}m-thick$ Pd-Ru (6wt%) membrane was measured at various temperatures and pressures. The permeation flux followed the Sievert's law and thus the rate-limiting step of the hydrogen permeation was the bulk atomic diffusion step. The activation energy of the permeation flux was obtained at 17.9 kJ/mol and this value is consistent with those published previously. While no degradation of the permeation flux wasfound in the membrane exposed to the $O_2$ and $CO_2$ environments for 100 hours, the membrane exposed to $N_2$ environment for 100 hours showed the degradation in the $H_2$ permeation flux. The $H_2$ permeation was decreased as the exposure temperature to $N_2$, environment was increased. The $H_2$ permeation flux was fully recovered after the membrane was kept in the $H_2$ environment for certain time. The permeation flux degradation might be caused by the formation of metal nitride on the membrane surface.

Operation characteristics of partial oxidation reformer for transportation fuels (수송 연료용 부분산화 개질기의 운전특성)

  • Lee, Sangho;Bae, Joongmyeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.159.1-159.1
    • /
    • 2011
  • Partial oxidation reformer was fabricated and operated using commercial transportation fuels. Fuel injector and heating coil were used for fuel atomization and startup, respectively. The reformer was designed to produce syngas for $150{\sim}200W_e$ class solid oxide fuel cell. The reformer was operated in the $O_2$/C range between 0.6 and 0.8 while the capacity was fixed at $150W_e$. The temperature range in catalyst bed was between $500^{\circ}C$ and $900^{\circ}C$. Only 83% fuel was converted to $H_2$, CO, $CO_2$ and $CH_4$ at the operating conditions. The lowest temperature increase to $700^{\circ}C$ when the reformer was operated at $200W_e$, Although the temperature profiles was improved, fuel conversion was 88%. On the other hand, fuel was completely converted when micro-reactor operated at the same condition. This difference maybe due to aromatic compounds formation at homogeneous region. In addition, a significant amount of coke deposition was observed at vent line. Homogeneous reaction depends on the degree of mixing. For this purpose, two fluid nozzle and Ultra sonic injector were compared to investigate the effect of atomization. Sauter mean diameter(SMD) of Ultra sonic injector was lower than two-fluid nozzle at test condition. However, conversion efficiency and fuel conversion were not improved by using two-fluid nozzle. these results imply that the temperature of homogeneous reaction region should be controlled to prevent coke formation.

  • PDF