• 제목/요약/키워드: Fuel Cell Temperature

검색결과 933건 처리시간 0.027초

연료전지 차량의 열 및 물 균형 유지를 위한 냉각 시스템 개발 (Development of Cooling System for Thermal Management and Water Balance in Fuel Cell Vehicle)

  • 김성균;이승용;김치명;박용선
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.113-117
    • /
    • 2006
  • This paper Is for development of cooling module in order to maintain heat and water balance in fuel cell vehicle. Thermal management system for fuel cell is disadvantage because the temperature of coolant is lower than that of ICE and heat duty of radiator is higher. By CFD simulation, cool ing module was developed for water balance of system. Hot chamber test and hot area/high altitude test on cool ing module was completed.

  • PDF

니켈 섬유 매트 촉매를 사용한 바이오가스 수증기개질 반응 (Steam Reforming of Biogas on Nickel Fiber Mat Catalysts)

  • ;김용민;윤창원;남석우
    • 에너지공학
    • /
    • 제20권3호
    • /
    • pp.252-258
    • /
    • 2011
  • Nickel fiber mat was investigated as a potential structured catalyst for steam reforming of biogas in the temperature range of $600-700^{\circ}C$. The activity of as-received catalyst was very low owing to the smooth surface of fibers. Pretreatment of the catalyst by oxidation followed by reduction under methane partial oxidation condition significantly improved the catalytic activity, although degradation of the activity was found during the reaction due to oxidation and sintering. This deactivation was retarded by supplying additional hydrogen in the inlet gases or by coating $CeO_2$ over the catalyst surfaces.

대형 Community 건물의 연료전지 구동 복합열원 하이브리드 히트펌프 시스템 성능에 관한 해석적 연구 (Study on the Performance of Fuel Cell Driven Compound Source Heat Pump System to a Large Community Building)

  • 정동화;변재기;최영돈;조성환
    • 신재생에너지
    • /
    • 제4권3호
    • /
    • pp.23-35
    • /
    • 2008
  • In the present study, performances of fuel cell driven compound source hybrid heat pump system applied to a large community building are simulated. Among several renewable energy sources, ground, river, sea, and waste water sources are chosen as available alternative energies. The performance and energy cost are varied with the hybrid heat pump sources. The system design and operation process appropriate for the surrounding circumstance guarantee the high benefit of the heat pump system applied to a large community building. Th system is driven by fuel cell system instead of the late-night electricity due to the advantages of the low energy cost and waste heat with high temperature.

  • PDF

Maximum Efficiency Point Tracking Algorithm Using Oxygen Access Ratio Control for Fuel Cell Systems

  • Jang, Min-Ho;Lee, Jae-Moon;Kim, Jong-Hoon;Park, Jong-Hu;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • 제11권2호
    • /
    • pp.194-201
    • /
    • 2011
  • The air flow supplied to a fuel cell system is one of the most significant factors in determining fuel efficiency. The conventional method of controlling the air flow is to fix the oxygen supply at an estimated constant rate for optimal efficiency. However, the actual optimal point can deviated from the pre-set value due to temperature, load conditions and so on. In this paper, the maximum efficiency point tracking (MEPT) algorithm is proposed for finding the optimal air supply rate in real time to maximize the net-power generation of fuel cell systems. The fixed step MEPT algorithm has slow dynamics, thus it affects the overall efficiency. As a result, the variable step MEPT algorithm is proposed to compensate for this problem instead of a fixed one. The complete small signal model of a PEM Fuel cell system is developed to perform a stability analysis and to present a design guideline. For a design example, a 1kW PEM fuel cell system with a DSP 56F807 (Motorola Inc) was built and tested using the proposed MEPT algorithm. This control algorithm is very effective for a soft current change load like a grid connected system or a hybrid electric vehicle system with a secondary energy source.

중.저온형 고체산화물 연료전지에서 연료로 공급되는 CO 와 H2 가 성능에 미치는 영향 (Performance Behavior by H2 and CO as a Fuel in Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFC))

  • 박광진;배중면
    • 대한기계학회논문집B
    • /
    • 제32권12호
    • /
    • pp.963-969
    • /
    • 2008
  • The performance behavior of solid oxide fuel cell using $H_2$ and CO as fuels was investigated. The power densities and impedance results showed a little variation as the ratio of $H_2$ and CO changed. However, when the pure CO was used as a fuel, area specific resistance (ASR), especially low frequency region, was increased. This might be due to carbon deposition on anode. The maximum power density was 60% lower using CO than using $H_2$. Carbon deposition reduced after constant current was applied. The SOFC performance was recovered from the carbon deposition after applying constant current during 100h.

유체역학과 컴퓨터 시뮬레이션의 융합을 통한 연료전지의 분석 (Convergence of Fluid Dynamics and Computer Simulation for the Internal Investigation of Fuel Cell)

  • 김세현
    • 디지털융복합연구
    • /
    • 제14권6호
    • /
    • pp.245-251
    • /
    • 2016
  • 3차원 모델링을 이용하여 연료전지의 유로형상과 유체의 흐름 방향에 따른 연료전지의 성능에의 영향성을 분석을 수행하였다. 본 연구에서 연료전지 내부의 각 유로형상과 유동장의 변화에 전류밀도와 온도의 분포가 어떻게 이루어져 있는지를 분석하였고, 연료전지 단위셀의 전체적인 성능을 분석하였다. 3차원 모델링을 수행하기 위하여 Navier-Stokes 방정식을 전산유체역학을 이용하여 풀었다. 전산유체역학에 전기화학반응의 모델을 융합하여 계산을 수행하였다. 또한, 본 연구에서는 직선유로와 실제 사용되는 형태인 직사각형 모양의 유로형태를 모사하여 유로구조의 영향성을 분석하였다. 그리고 유체의 유동장을 변형시켜 그 영향성과 결과를 비교해 보았다. 본 전산모사 연구를 통하여 연료가 풍부한 부분보다는 산소가 풍부한 부분에서 전류밀도가 보다 높은 것을 확인할 수 있었다. 또한 전반적으로 전류밀도가 높은 곳에서 온도가 높은 것으로 확인할 수 있었다. 본 연구를 통하여 온도의 분포와 유로형상과 유동장 그리고 전류밀도의 연관성을 확인할 수 있었다.

3MW급 MCFC용 가습기 개발 (Develolpment of Heat Exchanger for the Humidifier of 3MW MCFC)

  • 김선화;오용민;김재식;이재준
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.88.1-88.1
    • /
    • 2010
  • In recent days, the study for the renewable energy is required to supplement traditional energy source. One of the renewable energy of Fuel Cell is classified according to the electrolytes. It is the MCFC (Molten Carbonate Fuel Cell) for this study. One of the equipments of the heat exchangers is important component for efficiency and cost. In MCFC system, several heat exchangers are used according to the application. It is named for the humidifier because it is to preheat the fuel and water so that a reactor will convert some of the incoming fuel to hydrogen. Then, hot side fluid service is used the exhausted gas from the fuel cell and cold side fluid service is the fuel and water. The operation temperature range is about 25~500 Celsius Degree. This heat exchanger has the problems of heat transfer considering to multiphase fluid and phase changing. So it is necessary to analyze the heat transfer characteristics and to propose the reasonable design methodology for the humidifier. In this study, the thermal characteristic for the humidifier is estimated by using commercial tool of heat exchanger design and rating. And this study provides the testing methodology and presents the results for test facility of fabrication and for testing.

  • PDF

Pulsed Wire Evaporation(PWE) Method으로 제조된 나노 NiO 분말의 SOFC 연료극 기능성층으로의 적용 (The Effect of Using Nano NiO Powder Made by Pulsed Wire Evaporation (PWE) Method on SOFC Anode Functional Layer)

  • 김혜원;김동주;박석주;임탁형;이승복;신동렬;윤순길;송락현
    • 한국수소및신에너지학회논문집
    • /
    • 제20권6호
    • /
    • pp.485-491
    • /
    • 2009
  • In present work, NiO/YSZ anode functional layer was prepared by nano NiO powder and 8YSZ powder. The nano NiO powders were made by Pulsed wire evaporation (PWE) method. Nano NiO- YSZ functional layer was sintered at the temperature of $900-1400^{\circ}C$. The prepared functional layer was characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy. The nano NiO- YSZ anode functional layer sintered at $1300^{\circ}C$ shows the lowest polarization resistance. Nano NiO- YSZ anode functional layer shows about two times smaller polarization resistance than the anode functional layer made by commercial NiO-YSZ powders. Based on these experimental results, it is concluded that the nano NiO-YSZ cermet is suitable as a anode functional layer operated at $800^{\circ}C$.

연료전지/배터리 하이브리드 차량 개발 (Development of Fuel Cell/Battery Hybrid Vehicle)

  • 손영준;박구곤;임성대;엄석기;양태현;윤영기;이원용;김창수
    • 한국전기화학회:학술대회논문집
    • /
    • 한국전기화학회 2005년도 수소연료전지공동심포지움 2005논문집
    • /
    • pp.103-110
    • /
    • 2005
  • Fuel cell systems are consisted of various parts, for example fuel cell stack, fuel supplier, electrical converters, controllers and so on. Each components of system should have appropriate specification for their applications as well as simplicity. Because thermal load can be managed simply by using fans without any water cooling system, the air-cooled PEMFC is widely used in sub kW and around 1kW systems. The performance of an air-cooled system is highly dependent on ambient temperature and humidity. In this paper, the air-cooled PEMFC systems are developed and investigated to study the operating characteristics in the aspect of the thermal and water coupled management by the control of the axial fans and compressors. Various experiments were also conducted to get the cell voltage distribution, the relative humidity of the reactant gas and the thermal management by axial cooling fans, which cannot be observed in single cell experiment. After then, as practical applications, portable fuel cell system and a hybrid electric cart were successfully integrated and operated by using this air-cooled stack.

  • PDF

액티브형 직접메탄올연료전지 시스템의 메탄올 농도 변동이 성능에 미치는 영향성에 대한 수치적 연구 (A Numerical Investigation of Effects of Methanol Concentration Fluctuation in Active-type Direct Methanol Fuel Cell (DMFC) Systems)

  • 곽건희;고요한;이수원;이진우;백동현;정두환;주현철
    • 한국수소및신에너지학회논문집
    • /
    • 제24권6호
    • /
    • pp.495-509
    • /
    • 2013
  • In this study, we develop a one-dimensional (1-D), two-phase, transient-thermal DMFC model to investigate the effect of methanol concentration fluctuation that usually occurs in active-type direct methanol fuel cell (DMFC) systems. 1-D transient simulations are conducted and time-dependent behaviors of DMFCs are analyzed under various DMFC operating conditions such as anode/cathode stoichiometry, cell temperature, and cathode inlet humidification. The simulation results indicate that the effect of methanol concentration fluctuation on DMFC performance can be mitigated by proper control of anode/cathode stoichiometry, providing a guideline to optimize operating conditions of active DMFC systems.