• 제목/요약/키워드: Fuel Cell Temperature

검색결과 933건 처리시간 0.025초

Experimental performance characteristics of 1 kW commercial PEM fuel cell

  • Shubhaditya Kumar;Pranshu Shrivastava;Anil Kumar
    • Advances in Energy Research
    • /
    • 제8권4호
    • /
    • pp.203-211
    • /
    • 2022
  • The aim of this paper is to analyze the performance of commercial fuel cell (rated capacity 1000W) with the help of resistive load and output power variation with change in H2 flow rate and calculate the maximum power point (MPP) of the proton exchange membrane (PEM) while changing AC and DC load respectively. The factors influencing the output power of a fuel cell are hydrogen flow rate, cell temperature, and membrane water content. The results show that when the H2 flow rate is changed from 11, 13, and 15 Lpm, MPP is increased from lower to higher flow rate. The power of the fuel cell is increased at the rate of 29% by increasing the flow rate from 11 to 15 lpm. This study will allow small-scale industries and residential buildings (in remote or inaccessible areas) to characterize the performance of PEMFC. Furthermore, fuel cell helps in reducing emission in the environment compared to fossil fuels. Also, fuel cells are ecofriendly as well as cost effective and can be the best alternative way to convert energy.

PEM 연료전지시스템의 동특성 해석 (Dynamic Analysis of PEM fuel cell system)

  • 김범수;전순일;임원식;박영일
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.353-356
    • /
    • 2005
  • We developed a dynamic model of PEM fuel cell system which can analyze its transient response to dynamic load current. System components such as compressor, air cooler, humidifier, and stack were modeled based on their dynamic equations and performance maps by using Matlab Simulink platform. Through this simulation model, dynamic characteristics of fuel cell system including oxygen excess rat io, stack voltage, and system efficiency were shown. In addition to that, we briefly analyzed the humidity effect on cathode pressure and system efficiency, expecting that this model can be further used to optimize fuel cell system parameters just like operating pressure and temperature, humidity and oxygen excess ratio.

  • PDF

용융탄산염 연료전지의 기술개발 현황 및 분석 (Development Status of the Molten Carbonate Fuel Cell Technology)

  • 홍성안;남석우
    • 공업화학
    • /
    • 제3권4호
    • /
    • pp.535-546
    • /
    • 1992
  • The molten carbonate fuel cell(MCFC) has been under Intensive development for the last decade as a second generation fuel cell. The advantages of the MCFC over the phophoric acid fuel cell are higher efficiency, its ability to accept CO and $H_2$ as a fuel, lower material costs, and high operating temperature making internal reforming possible. These features, along with low atmospheric emissions, will open up a significant market as an attractive means of developing highly efficient power plant. This article reviews a status of the MCFC research and development, a principle of the MCFC, and cell and stack technology including the status of electrodes, matrices and electrolytes. Several technical difficulties which must be resolved to be commercialized art mainly focused.

  • PDF

인산형 연료전지 스택에 대한 3차원 모델링 및 모사 (Three-Dimensional Modeling and Simulation of a Phosphoric Acid Fuel Cell Stack)

  • 안현식;김효
    • 한국가스학회지
    • /
    • 제4권1호
    • /
    • pp.40-48
    • /
    • 2000
  • 연료전지는 일정하게 유지되는 전극-전해질계의 공정에 의해 연료와 산화제의 화학에너지를 전기에너지로 끊임없이 전환시킬 수 있는 전기화학장치이다. 인산형 연료전지는 전해질로 진한 인산염을 사용한다. 연료전지 시스템에서 가장 중요한 부분인 스택은 연료의 산화가 일어나는 anode, 산화물의 환원이 일어나는 cathode, 그리고 anode와 cathode를 분리시키고 이온을 전도시키는 전해질로 이루어져 있다. 연료전지의 성능은 시스템의 환경에 따른 작동 및 디자인 변수들에 의해 좌우된다. 따라서 연료전지의 핵심부분이라 할 수 있는 스택의 성능향상을 위하여 전산유체역학 코드를 이용한 스택에 대한 3차원적 모델링 및 전기화학반응이 포함된 모사를 수행하였다. 이로부터 산화제의 유량변화에 따른 스택 내부에서의 연료, 산화제 및 생성물의 농도, 그리고 반응에 의해 생성된 열의 전달에 의한 스택의 온도 분포 및 변화를 전산유체 코드인 FLUENT를 이용하여 계산하였다.

  • PDF

연료전기용 컴팩트형 개질기의 고성능화를 위한 고온 공기 연소 기술의 적용에 관한 연구 (A Numerical Study on a High-Temperature Air Combustion Burner for a Compact Fuel-Cell Reformer)

  • 이경호;권오채
    • 한국수소및신에너지학회논문집
    • /
    • 제16권3호
    • /
    • pp.229-237
    • /
    • 2005
  • A new burner configuration for a compact fuel-cell reformer with a high-temperature air combustion concept was numerically studied. The burner was designed for a 40 $Nm^3/hr$ hydrogen-generated reformer using natural gas-steam reforming method. In order to satisfy the primary requirements for designing a reformer burner (uniform distribution of temperature along the fuel processor walls and minimum heat losses from the reformer), the features of the present burner configuration included 1) a self-regenerative burner for an exhaust-gas-recirculation to apply for the high-temperature air combustion concept, and 2) an annular-type shield for protecting direct contact of flame with the processor walls. For the injection velocities of the recirculated gas of 0.6-2.4 m/s, the recirculated gas temperature of 1000 K, and the recirculated oxygen mole fraction of 4%, the temperature distributions along the processor walls were found uniform within 100 K variation. Thus, the present burner configuration satisfied the requirement for reducing temperature gradients along the processor walls, and consequently demonstrated that the high-temperature air combustion concept could be applied to the practical fuel reformers for use of fuel cells. The uniformity of temperature distribution is enhanced as the amount of the recirculated gas increases.

연료 전지 냉각판의 최적 설계 (A Study on the Optimization of Fuel-Cell Stack Design)

  • 홍민성;김종민
    • 한국공작기계학회논문집
    • /
    • 제12권6호
    • /
    • pp.92-96
    • /
    • 2003
  • Feul-Cell system consists of fuel reformer, stack and energy translator. Among these parts, stack is a core part which produces electricity directly. In order to set a stack module, fabrication of appropriate stack, design of water flow path in stack and control of coolant are needed. Especially, oater or air is used as a coolant to dissipate heat. The different temperature of each electric cell after cooling affects the performance of the stack. Therefore, it is necessary that the relationship between coolant hearing rate, width of stack, properties of stack, and the shape of water flow path must be understood. For the optimal design, the computational simulation by CFD-ACE has been conducted and the resulting database has been constructed.

25 kW급 용융 탄산염 연료 전지 스택의 상압 및 가압 운전 (Atmospheric and Pressurized Operation of a 25 kW MCFC Stack)

  • 고준호;서혜경;임희천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.264-269
    • /
    • 2000
  • As a part of the ongoing effort towards commercial application of high-temperature fuel cell power generation systems, we have recently built a pilot-scale molten carbonate fuel cell power plant and tested it. The stack test system is composed of diverse peripheral units such as reformer, pre-heater, water purifier, electrical loader, gas supplier, and recycling systems. The stack itself was made of 40cells of $6000cm^2$ area each. The stack showed an output higher than 25kW power and a reliable performance at atmospheric operation. A pressurized performance was also tested, and it turned out the cell performance increased though a few cells have shown a symptom of gas crossover. The pressurized operation characteristics could be analyzed with numerical computation results of a stack model.

  • PDF

인산형 연료전지의 가스유로방향 변화에 따른 열 및 물질전달해석 (Heat and Mass Transfer Analysis of Phosphoric Acid Fuel Cell According to Variation of gas Flow passage)

  • 전동협;정영식;채재우
    • 대한기계학회논문집
    • /
    • 제18권5호
    • /
    • pp.1338-1346
    • /
    • 1994
  • The objective of this study is to investigate the effect of various parameters, such as temperature, mean current density and voltage on the performance of phosphoric acid fuel cell (PAFC) by numerical analysis. Two types of flow passages, which are Z-parallel type and Z-counter type, are evaluated to obtain the best current density and temperature distribution. Parametric studies and sensitivity analysis of the PAFC system's operation in single cell are accomplished. A steady state simulation of the entire system is developed using nonlinear ordinary differential equations. The finite difference method and trial and error procedures are used to obtain a solution.

관형 고체산화물연료전지 테스트 지그 최적화 (Optimal Design for Tubular SOFC Testing Jig)

  • 최훈;안권성;신창우;차석원
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.303-306
    • /
    • 2009
  • High temperature solid oxide fuel cells (SOFCs) offer a clean, pollution-free technology to electrochemically generate electricity at high efficiencies. Solid oxide fuel cells in several different designs have been investigated; these include planar and tubular geometries. The tubular type cell is widely researched due to it have advantages about thermal expansion and sealing issues. Unfortunately, lab scale tubular cell for testing has thermal expansion and sealing problems. The previous Jig for lab scale tubular cell testing has many sealing problems. When we feed fuel gas to jig inlet, ceramic glue sealant has amount of gas expansion pressure, because temperature of feeding gas changes ambient temperature to high temperature ($700{\sim}900^{\circ}C$). Furthermore, when we carry out long time test, something like degradation test, crack of ceramic glue sealant due to weakness of mechanical properties can make stop working the test. Additionally, we reduce setting process for assembling, because micanite is not required drying or debinding process.

  • PDF

인산형 연료전지의 성능해석을 위한 스택내의 열전달 현상에 관한 연구 (A Study on Heat Transport Phenomena in Fuel Cell Stack for the Performance Analysis of Phosphoric Acid Fuel Cell)

  • 문덕용;구자용;서종철;김유
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1991년도 추계학술대회 논문집
    • /
    • pp.160-164
    • /
    • 1991
  • The effect of various parameters, such as temperature, current density and operating valtage on the performance of phosphoric acid fuel cell stack was studied by using numerical analysis. The utilization ratio of reaction gas, inlet condition of reaction air and cooling air, inlet condition of cooling air flow latin were changed regularly, The results showed good agreements with the existing results and experimental ones.

  • PDF