• Title/Summary/Keyword: Fuel Cell Power System

Search Result 769, Processing Time 0.026 seconds

Maximum Efficiency Point Tracking Algorithm Using Oxygen Access Ratio Control for Fuel Cell Systems

  • Jang, Min-Ho;Lee, Jae-Moon;Kim, Jong-Hoon;Park, Jong-Hu;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.194-201
    • /
    • 2011
  • The air flow supplied to a fuel cell system is one of the most significant factors in determining fuel efficiency. The conventional method of controlling the air flow is to fix the oxygen supply at an estimated constant rate for optimal efficiency. However, the actual optimal point can deviated from the pre-set value due to temperature, load conditions and so on. In this paper, the maximum efficiency point tracking (MEPT) algorithm is proposed for finding the optimal air supply rate in real time to maximize the net-power generation of fuel cell systems. The fixed step MEPT algorithm has slow dynamics, thus it affects the overall efficiency. As a result, the variable step MEPT algorithm is proposed to compensate for this problem instead of a fixed one. The complete small signal model of a PEM Fuel cell system is developed to perform a stability analysis and to present a design guideline. For a design example, a 1kW PEM fuel cell system with a DSP 56F807 (Motorola Inc) was built and tested using the proposed MEPT algorithm. This control algorithm is very effective for a soft current change load like a grid connected system or a hybrid electric vehicle system with a secondary energy source.

A study on the power plant system combined with PEM fuel cell and the wasted hydrogen from the sea water electrolyzer of nuclear power plants (원자력 발전소의 해수전해설비 폐수소를 활용한 PEM 연료전지 발전 시스템에 관한 연구)

  • Choi, Jongwon;Lee, Juhyung;Cha, Sukwon;Kim, Minsoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.124.2-124.2
    • /
    • 2010
  • Generally, a coolant of the nuclear power plant is manufactured by electrolyzing the sea water near the plant for making the sodium hypochlorite(NaOCl), which is used for sterilizing the bacteria and the shellfishes sticking to the drains or the pumps at the outlet of the cooling system due to $8-10^{\circ}C$ warmer temperature than the inlet sea water. During manufacturing the sodium hypochlorite, the hydrogen with the high purity is also produced at the anode side of the electrolyzer. This paper describes a novel power plant system combined with the polymer electrolyte membrane(PEM) fuel cell, the wasted hydrogen from the sea water electrolyzer and the wasted heat of the nuclear power plant. The present status over the exhausted hydrogen at twenty nuclear power plants in Korea was investigated in this study, from which an available power generation is estimated. Furthermore, the economic feasibility of the PEM fuel cell power plant is also evaluated by a current regulations over the power production and exchange using a renewable energy shown in Korea Power Exchange(KRX).

  • PDF

Analysis for Performance of the HT-PEFC based Auxiliary Power Unit by Aspen Plus Software (Aspen Plus 프로그램에 의한 장갑차량용 고온고분자전해질 연료전지 기반 보조전원장치 성능 시뮬레이션 분석)

  • Yu, Minkyu;Park, Ji-il;Kwon, Hyuksang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.211-217
    • /
    • 2016
  • The fuel cell based auxiliary power unit (APU) is promising for power source of armed vehicles due to its silence and high efficiency. Especially, the on board hydrogen generation and fed to fuel cell system was core technology of this power system. In this study, we analyzed the performance of the Auto thermal reactor (ATR) that produce the hydrogen from the fuel, integrated High temperature polymer electrolyte fuel cell (HT-PEFC) by Aspen plus software. The fuel was designed as a n-dodecane for analysis of military fuel (JP-8).

A Study on Design and Optimization of 500W PEM Fuel Cell System (500W PEM형 연료전지시스템 구축 및 운전 최적화에 관한 연구)

  • Park, Se-Joon;Choi, Hong-Jun;Kim, Gwang-Yeol;Cha, In-Su;Lim, Jung-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.191-193
    • /
    • 2008
  • A fuel cell power system among various alternative power sources has many advantages such as low-polluted, high-efficient, and heat-recyclable, thus it is now able to be up to hundreds MWh-scaled through improving feasibility and longevity of it. During the last few years of the twentieth century, much changed to stimulate new and expanding interest in fuel cell technology. This paper presents optimal design and operational features of stand-alone 500W PEMFC(Proton Exchange Membrane Fuel Cell) system which can be a substitute instead fossil fuel. The stack of PEMFC is composed of 35 laminated graphite, and a unit cell of the stack has electrical characteristics as below; 14W, 0.9V, 15A. The other components of BOP(Balance of Plant) are composed of hydrogen and nitrogen tanks, regulators, 3way 5solenoid valves, mass flow meters, etc.

  • PDF

Transient Performance of a Hybrid Electric Vehicle with Multiple Input DC-DC Converter

  • Nashed, Maged N.F.
    • Journal of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.230-238
    • /
    • 2003
  • Electric vehicles (EV) demands for greater acceleration, performance and vehicle range in pure electric vehicles plus mandated requirements to further reduce emissions in hybrid electric vehicles (HEV) increase the appeal for combined on-board energy storage systems and generators. And the power electronics plays an important role in providing an interface between fuel cells (FC) and loads. This paper deals with a multiple input DC-DC power converter devoted to combine the power flowing of multi-source on energy systems. The multi-source is composed of (i) FC system as a prime power demands, (ii) super capacitor banks as energy storage devices for high and intense power demands, (iii) superconducting magnetic energy storage system (SMES), (iv) multiple input DC-DC power converter and (v) a three phase inverter-fed permanent magnet synchronous motor as a drive. In this system, It is used super capacitor banks and superconducting magnetic energy replaces from the battery system. The modeling and transient performance simulation is effective for reducing transient influence caused by sudden charge of effective load. The main purpose of power electronic converters is to convert the DC power output from the fuel cell and other to a suitable AC voltage, which can be connected to electric loads directly (PMSM). The fuel cell and other output is connected to the DC-DC converter, which regulates the DC link voltage.

Implementation of a DSP Based Fuel Cell Hardware Simulator (DSP기반 연료전지 하드웨어 시뮬레이터 구현)

  • Oum, Jun-Hyun;Lim, Young-Cheol;Jung, Young-Gook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.59-68
    • /
    • 2009
  • Fuel cell generators as the distributed generation system with a few hundred watt$\sim$a few hundred kilowatt capacity, can supply the high quality electric power to user as compared with conventional large scale power plants. In this paper, PEMFC(polymer electrolyte membrane fuel cell) generator as micro-source is modelled by using PSIM simulation software and DSP based fuel cell hardware simulator based on the PSIM simulation model is implemented. The relation of fuel cell voltage and current(V-I curve) is linearized by first order function on the ohmic area in voltage-current curve of fuel cell. The implemented system is composed of a PEMFC hardware simulator, an isolated full bridge dc boost converter, and a 60[Hz] voltage source PWM inverter. The voltage-current-power(V-I-P) characteristics of the implemented fuel cell hardware simulator are verified in load variation and transient state and the 60[Hz] output voltage sinusoidal waveform of the PWM inverter is investigated under the resistance load and nonlinear diode load.

PEMFC Based Cogeneration System Using Heat Pump (히트펌프를 이용한 PEMFC 기반 열병합 발전 시스템)

  • BUI, TUANANH;KIM, YOUNG SANG;LEE, DONG KEUN;AHN, KOOK YOUNG
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.5
    • /
    • pp.324-330
    • /
    • 2021
  • In recent years, polymer electrolyte membrane fuel cell (PEMFC) based cogeneration system has received more and more attention from energy researchers because beside electricity, the system also meets the residential thermal demand. However, the low-quality heat exited from PEMFC should be increased temperature before direct use or storage. This study proposes a method to utilize the heat exhausted from a 10 kW PEMFC by coupling a heat pump. Two different configuration using heat pump and a reference layout with heater are analyzed in term of thermal and total efficiency. The system coefficient of performance (COP) increases from 0.87 in layout with heaters to 1.26 and 1.29 in configuration with heat pump and cascade heat pump, respectively. Lastly, based on system performance result, another study in economics point of view is proposed.

Modeling and Analysis of the Air Supply System for Vehicular PEM Fuel Cell (PEM 연료전지 자동차의 급기 시스템의 모델링 및 분석)

  • Jang, Hyuntak;Kang, Esak
    • Journal of Hydrogen and New Energy
    • /
    • v.14 no.3
    • /
    • pp.236-246
    • /
    • 2003
  • This paper focuses on developing a model of a PEM fuel cell stack and to integrate it with realistic model of the air supply system for fuel cell vehicle application. The fuel cell system model is realistically and accurately simulated air supply operation and its effect on the system power and efficiency using simulation tool Matlab/Simulink. The Peak performance found at a pressure ratio of 3, and it give a 15mV increase per cell. The limit imposed is a minimum SR(Stoichiometric Ratio) of 2 at low fuel cell load and 2.5 at high fuel cell load.

The Ejector Design and Test for 125 kW Class Molten Carbonate Fuel Cell System (125 kW급 용융탄산염 연료전지 시스템의 이젝터 설계 및 시험)

  • KIM, BEOMJOO;PARK, SOO-MAN;SONG, OH-SEOP
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.2
    • /
    • pp.139-147
    • /
    • 2018
  • Korea Electric Power Research Institute (KEPCO RI) had developed molten carbonate fuel cell (MCFC) system since 1993. Finally, KEPCO RI developed and operated a 125 kW MCFC system in 2010. To make MCFC system compact, it is indispensable to install an ejector in this system where the anode off gas, the cathode off gas, and fresh air are mixed before flowing to the catalytic burner. KEPCO RI had developed various ejectors for MCFC system since 2006. The 125 kW MCFC system built with the developed ejector was operated successfully in Boryeong Thermal Power Plant in 2010. This 125 kW MCFC ejector was designed on the basis of the experimental results of 5 kW and 75 kW MCFC ejectors. The main goal of ejector design in our MCFC system is to maintain the entrainment ratio and the pressure between fuel cell stack and catalytic burner within the operating range. In this paper, the design results of the ejector are presented based on the 125 kW MCFC system operating conditions. In addition, a designed ejector was manufactured and installed in the MCFC system. As the fuel cell is under load operation, the pressure surrounding the ejector was measured to ensure that the fuel cell system is operating smoothly.

An Intelligent Control Method for Optimal Operation of a Fuel Cell Power System (연료전지 발전 시스템의 최적운전을 위한 지능제어 기법)

  • Hwang, Jin-Kwon;Choi, Tae-Il
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.154-161
    • /
    • 2009
  • A fuel cell power plant is a very complex system which has various control loops with some non-linearity. For control of a fuel cell power plant, dynamic models of fuel cell stacks have been developed and simplified process flow diagrams of a fuel cell power plant has been presented. Using such a model of a Molten Carbonate Fuel Cell (MCFC) power plant, this paper deals with development of an intelligent setpoint reference governor (I-SRG) to find the optimal setpoints and feed forward control inputs for the plant power demand. The I-SRG is implemented with neural network by using Particle Swarm Optimization (PSO) algorithm based on system constraints and performance objectives. The feasibility of the I-SRG is shown through simulation of an MCFC power plant for tracking control of its power demand.