• 제목/요약/키워드: Fuel Cell Power Conversion System

검색결과 65건 처리시간 0.022초

연료전지를 이용한 전력변환장치 시스템 모델링 (The Modeling of Power conversion system with PEM fuel cell)

  • 한경희;권삼영;박현준;이병송;백수현
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.1984-1989
    • /
    • 2008
  • A powered system with fuel cell is regarded as a high current and low voltage source. Effects of the loads on the electrical power source are important to optimize the integrated power system. The design parameters of the system should be chosen by taking into account the characteristics of the fuel cell, so the costs of the power system at given operating conditions can be reduced. Furthermore, the dynamics characteristic of the system is crucial to acquire performance in applications, particularly interactions between loads and the fuel cell system. Currently, no integrated simulation has been approached to analyze interrelated effects. Therefore, the dynamic models of power conversion system with a PEM fuel cell that includes the PEM fuel cell stack, DC/DC converter and associated controls is developed. Electric lads for the system are derived by using a power theory that separates a load current into active, reactive, distortion or a mixed current component. Dependency of the DC capacitor on the loads are analyzed.

  • PDF

소방 방재설비용 연료전지 발전시스템의 비절연형 고효율 전력변환기 설계 (High Efficiency Power Conversion System of Non Isolated Type Applied in Fuel Cell Generator Used to Fire Prevention Installation)

  • 곽동걸
    • 마이크로전자및패키징학회지
    • /
    • 제13권3호
    • /
    • pp.19-26
    • /
    • 2006
  • 본 논문은 예비 전력공급설비의 일환으로 비상시 소방 방재설비에 적용되는 연료전지 발전시스템에 대해 연구된다. 제안된 시스템은 비상시 상용 전력공급의 차단에 대비하여 소방 방재설비들의 전력공급원으로 이용된다. 연료전지 발전시스템에서 가장 손실이 큰 부분은 전력변환부이다. 또한 전력변환부의 손실은 전력변환을 위해 사용된 전력용 반도체 스위치의 스위칭 손실로 주어진다. 본 논문에서는 이러한 연료전지 발전시스템의 출력을 최대한 활용하기 위하여 부분공진의 기법이 적용된 고효율의 전력변환기가 제안된다. 또한 연료전지 발전시스템에 적용된 고효율 전력변환기는 비절연형으로 설계되고 사용된 제어스위치들은 새로운 소프트 스위칭 회로토폴로지에 의해 무손실로 동작되어 시스템의 효율을 증대시킨다. 다양한 컴퓨터 시뮬레이션과 특성실험을 통해 이론적 해석의 타당성이 입증된다.

  • PDF

FCEV용 전력변환장치와 FCEV의 기술동향 (Power Conversion System and Technical Trend of Fuel Cell Electric Vehicles)

  • 최욱돈;민병덕;이종찬;김종철;이종필
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2002년도 전력전자학술대회 논문집
    • /
    • pp.593-597
    • /
    • 2002
  • The power conversion system for Fuel Cell Electric Vehicle(FCEV), technical trend, and a various type of Fuel Cell and its characteristics are presented. Especially, this paper is focused on the control methods of power conversion devices applied for the Fuel Cell Electric Vehicle, configuration of power system and operation mode of the bidirectional DC/DC converter. The prevalent topology for the power conversion systems, simulation results and development a tendency of FCEV and it's market investigations are introduced.

  • PDF

Status Review of Power Electronic Converters for Fuel Cell Applications

  • Emadi, Ali;Williamson, Sheldon S.
    • Journal of Power Electronics
    • /
    • 제1권2호
    • /
    • pp.133-144
    • /
    • 2001
  • Power electronics plays an important role in providing an interface between fuel cells and loads. Furthermore, power electronic converters ensure that the power is reliably and efficiently delivered to the load in the required DC or AC form. In this paper, major types of fuel cells are presented. Basic structures, operating principles, and different applications of fuel cells are described. In addition, current status and future trends in the areas of power electronics for fuel cells are described. In addition, current statue and future trends in the areas of power electronics for fuel cell applications are explained. A review of fuel cell power electronic system topologies and basic requirements are given as well.

  • PDF

Power Electronic Converters for Fuel Cell Applications

  • Williamson S. S.;Emadi A.
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.660-667
    • /
    • 2001
  • Power electronics plays an important role in providing an interface between fuel cells and loads. Furthermore, power electronic converters ensure that the power is reliably and efficiently delivered to the load in the required DC or AC form. In this paper, major types of fuel cells are presented. Basic structures, operating principles, and different applications of fuel cells are described. In addition, current status and future trends in the areas of power electronics for fuel cell applications are explained. A review of fuel cell power electronic system topologies and basic requirements are given as well.

  • PDF

가정용 연료전지 시스템의 계통연계 시 수용가 및 배전계통에서의 고조파 영향 평가 (An Assessment on Harmonics Effect in Customer and the Distributed Power System during Grid Connection of Residential Fuel Cell System)

  • 박찬엄;정진수;한운기
    • 전기학회논문지
    • /
    • 제60권6호
    • /
    • pp.1280-1285
    • /
    • 2011
  • Recently, due to the use of fossil fuels for electric power production, carbon emissions increased excessively. Thereby, in order to replace fossil fuels, many studies about fossil fuels such as solar and fuel cell energy source are progressing. Fuel cell system has high energy conversion efficiency. Also, fuel cell system is environmentally friendly system because the carbon emission is almost not occur. Therefore, the fuel cell system is considered as the core technology of in the fields of the future energy and environmental. Fuel cell system has an effect on distribution power system because another power source of other than large power plants. So, fuel cell system can be degradation reason of power quality in the power system. In this paper, we constructed the system for an assessment on harmonics effect. The system is composed with power source, harmonics generation and linear load, fuel cell system. we also performed assessment on harmonics effect in customer and the distributed power system during grid connection of residential fuel cell system. An assessment cases are divided into three. A Case 1 is state that residential load and fuel system are connected to grid, Case 2 is state that residential load and harmonics load are connected to grid, and Case 3 is state that all loads are connected to grid. As a output of fuel cell system is increase, analysis results based on assessment system showed that power quality became more aggravation as effect of harmonics.

암모니아 공급 고체산화물 연료전지의 1D 반응 모델 (1D Kinetics Model of NH3-Fed Solid Oxide Fuel Cell)

  • 잡반티엔;쿠엔;안국영;배용균;이선엽;김영상
    • 한국수소및신에너지학회논문집
    • /
    • 제33권6호
    • /
    • pp.723-732
    • /
    • 2022
  • Cracking ammonia inside solid oxide fuel cell (SOFC) stack is a compact and simple way. To prevent sharp temperature fluctuation and increase cell efficiency, the decomposition reaction should be spread on whole cell area. This leading to a question that, how does anode thickness affect the conversion rate of ammonia and the cell voltage? Since the 0D model of SOFC is useful for system level simulation, how accurate is it to use equilibrium solver for internal ammonia cracking reaction? The 1D model of ammonia fed SOFC was used to simulate the diffusion and reaction of ammonia inside the anode electrode, then the partial pressure of hydrogen and steam at triple phase boundary was used for cell voltage calculation. The result shows that, the ammonia conversion rate increases and reaches saturated value as anode thickness increase, and the saturated thickness is bigger for lower operating temperature. The similar cell voltage between 1D and 0D models can be reached with NH3 conversion rate above 90%. The 0D model and 1D model of SOFC showed similar conversion rate at temperature over 750℃.

가정용 연료전지 시스템의 단독운전 시 부하설비의 전압 및 전력품질 평가 (An Assessment on Voltage and Power Quality in Load Facility during the Islanding of Residential Fuel Cell System)

  • 박찬엄;정진수;한운기;임현성;송영상;김춘삼;임덕규
    • 전기학회논문지
    • /
    • 제62권12호
    • /
    • pp.1792-1797
    • /
    • 2013
  • Recently, due to the excessive use of fossil fuels, many studies about the fossil fuels such as solar and fuel cell energy source are progressing. Fuel cell system has high energy conversion efficiency. Also, fuel cell system is environmentally friendly system because the carbon emission is almost not occur. Therefore, the fuel cell system is considered as the core technology of in the fields of the future energy and environmental. Fuel cell system has an effect on distribution power system because another power source of other than large power plants. So, fuel cell system can be reason of power quality in the power system. In this paper, we constructed the system for an assessment on Islanding. The system is composed with power source, Impedance coordination load and linear load, fuel cell system. we are performed assessment on voltage and power quality in customer and the distributed power system during the Islanding of residential fuel cell system. In addition, no change in the impedance of power system, we made a islanding condition only using the actual load, As a variation of generation and load current under islanding, an analysis results based on assessment system showed that the power qualities of distribution system became more aggravation as effect of voltage sag and voltage swell phenomena.

연료전지로 구동되는 TIG-용접기용 DC-DC 컨버터 개발 (Development of TIG-Welder DC-DC Converter Based on Fuel Cell Stack)

  • 민명식;박상훈;전범수;원충연
    • 조명전기설비학회논문지
    • /
    • 제23권8호
    • /
    • pp.48-56
    • /
    • 2009
  • 본 논문은 연료전지스택을 입력전원으로 하는 TIG-용접기용 전력변환장치를 제안하였다. 일반적으로 TIG-용접기의 전원공급장치는 상용전원을 이용한 다이오드 브리지 정류회로를 사용한다. 이런 회로의 경우 다이오드 정류기와 용량이 큰 캐패시터를 사용하게 되므로 부피가 커지고, 입력전류는 맥동성분과 고조파를 포함하게 된다. 또한, TIG-용접기는 상용전원의 사용이 여의치 않은 도서산간지역이나 특수한 환경에서는 소형 경량의 이동성이 수월한 전원장치 및 전력원을 필요로 하게 된다. 따라서 본 논문의 TIG-용접기용 전력변환장치는 고체고분자형연료전지(PEMFC)를 입력전원으로 사용하고, 부스트 컨버터의 기능과 인버터 용접전원의 기능을 하나의 풀-브리지 컨버터로 구성하였다. 제안한 연료전지를 이용한 TIG-용접기용 전력변환장치는 컴퓨터 시뮬레이션과 실험을 통하여 성능을 검증하였다.

연료전지시스템을 위한 탄화수소 및 알코올 연료의 수증기 개질 특성에 관한 열역학적 연구 (Thermodynamic Analysis on Steam Reforming of Hydrocarbons and Alcohols for Fuel Cell System)

  • 오진숙;이경진;김선희;오세진;임태우;김종수;박상균;김만응;김명환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권4호
    • /
    • pp.388-396
    • /
    • 2011
  • 온실가스 및 대기오염물질 배출 규제는 고효율 및 친환경에 적합한 새로운 선박용 동력장치의 필요성을 제기하고 있다. 최근 이와 같은 문제들을 근본적으로 해결하기 위한 지속가능한 방법으로서 연료전지를 선박의 동력발생장치로 도입하고자 하는 검토가 진행되고 있다. 본 논문은 선박용 연료전지시스템에 사용될 수 있는 최적의 연료를 파악하기 위하여 다양한 탄화수소계 및 알코올계 연료의 수증기 개질특성을 열역학적으로 검토하고 있다.