• Title/Summary/Keyword: Fuel Cell Power Conversion System

Search Result 65, Processing Time 0.027 seconds

The Modeling of Power conversion system with PEM fuel cell (연료전지를 이용한 전력변환장치 시스템 모델링)

  • Han, Kyung-He;Kwon, Sam-Yung;Park, Hyun-June;Lee, Byung-Song;Baek, Soo-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1984-1989
    • /
    • 2008
  • A powered system with fuel cell is regarded as a high current and low voltage source. Effects of the loads on the electrical power source are important to optimize the integrated power system. The design parameters of the system should be chosen by taking into account the characteristics of the fuel cell, so the costs of the power system at given operating conditions can be reduced. Furthermore, the dynamics characteristic of the system is crucial to acquire performance in applications, particularly interactions between loads and the fuel cell system. Currently, no integrated simulation has been approached to analyze interrelated effects. Therefore, the dynamic models of power conversion system with a PEM fuel cell that includes the PEM fuel cell stack, DC/DC converter and associated controls is developed. Electric lads for the system are derived by using a power theory that separates a load current into active, reactive, distortion or a mixed current component. Dependency of the DC capacitor on the loads are analyzed.

  • PDF

High Efficiency Power Conversion System of Non Isolated Type Applied in Fuel Cell Generator Used to Fire Prevention Installation (소방 방재설비용 연료전지 발전시스템의 비절연형 고효율 전력변환기 설계)

  • Kwak, Dong-Kurl
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.3 s.40
    • /
    • pp.19-26
    • /
    • 2006
  • In this paper, author proposes to a fuel cell generation system used to fire prevention installation at emergency. The proposed system is used with a power source of fire prevention installation in preparation for breaking of commercial power supply at emergency. A part of most power loss of the fuel cell generation system is power converter. And the major losses of power converter are switching losses of power semiconductor switches used to power conversion. This parer is designed with a high efficiency power converter of non isolated type in order to increase efficiency of fuel cell power system. The controlling switches used in power conversion system are operated with soft switching, which is applied to partial resonant method to reduce switching loss. The result is that the fuel cell power system gets to high efficiency. Some computer simulated results and experimental results are confirmed to the validity of the analytical results.

  • PDF

Power Conversion System and Technical Trend of Fuel Cell Electric Vehicles (FCEV용 전력변환장치와 FCEV의 기술동향)

  • Choi U. D.;Min B. D.;Lee J. C.;Kim J. C.;Lee J. P.
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.593-597
    • /
    • 2002
  • The power conversion system for Fuel Cell Electric Vehicle(FCEV), technical trend, and a various type of Fuel Cell and its characteristics are presented. Especially, this paper is focused on the control methods of power conversion devices applied for the Fuel Cell Electric Vehicle, configuration of power system and operation mode of the bidirectional DC/DC converter. The prevalent topology for the power conversion systems, simulation results and development a tendency of FCEV and it's market investigations are introduced.

  • PDF

Status Review of Power Electronic Converters for Fuel Cell Applications

  • Emadi, Ali;Williamson, Sheldon S.
    • Journal of Power Electronics
    • /
    • v.1 no.2
    • /
    • pp.133-144
    • /
    • 2001
  • Power electronics plays an important role in providing an interface between fuel cells and loads. Furthermore, power electronic converters ensure that the power is reliably and efficiently delivered to the load in the required DC or AC form. In this paper, major types of fuel cells are presented. Basic structures, operating principles, and different applications of fuel cells are described. In addition, current status and future trends in the areas of power electronics for fuel cells are described. In addition, current statue and future trends in the areas of power electronics for fuel cell applications are explained. A review of fuel cell power electronic system topologies and basic requirements are given as well.

  • PDF

Power Electronic Converters for Fuel Cell Applications

  • Williamson S. S.;Emadi A.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.660-667
    • /
    • 2001
  • Power electronics plays an important role in providing an interface between fuel cells and loads. Furthermore, power electronic converters ensure that the power is reliably and efficiently delivered to the load in the required DC or AC form. In this paper, major types of fuel cells are presented. Basic structures, operating principles, and different applications of fuel cells are described. In addition, current status and future trends in the areas of power electronics for fuel cell applications are explained. A review of fuel cell power electronic system topologies and basic requirements are given as well.

  • PDF

An Assessment on Harmonics Effect in Customer and the Distributed Power System during Grid Connection of Residential Fuel Cell System (가정용 연료전지 시스템의 계통연계 시 수용가 및 배전계통에서의 고조파 영향 평가)

  • Park, Chan-Eom;Jung, Jin-Soo;Han, Woon-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1280-1285
    • /
    • 2011
  • Recently, due to the use of fossil fuels for electric power production, carbon emissions increased excessively. Thereby, in order to replace fossil fuels, many studies about fossil fuels such as solar and fuel cell energy source are progressing. Fuel cell system has high energy conversion efficiency. Also, fuel cell system is environmentally friendly system because the carbon emission is almost not occur. Therefore, the fuel cell system is considered as the core technology of in the fields of the future energy and environmental. Fuel cell system has an effect on distribution power system because another power source of other than large power plants. So, fuel cell system can be degradation reason of power quality in the power system. In this paper, we constructed the system for an assessment on harmonics effect. The system is composed with power source, harmonics generation and linear load, fuel cell system. we also performed assessment on harmonics effect in customer and the distributed power system during grid connection of residential fuel cell system. An assessment cases are divided into three. A Case 1 is state that residential load and fuel system are connected to grid, Case 2 is state that residential load and harmonics load are connected to grid, and Case 3 is state that all loads are connected to grid. As a output of fuel cell system is increase, analysis results based on assessment system showed that power quality became more aggravation as effect of harmonics.

1D Kinetics Model of NH3-Fed Solid Oxide Fuel Cell (암모니아 공급 고체산화물 연료전지의 1D 반응 모델)

  • VAN-TIEN GIAP;THAI-QUYEN QUACH;KOOK YOUNG AHN;YONGGYUN BAE;SUNYOUP LEE;YOUNG SANG KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.6
    • /
    • pp.723-732
    • /
    • 2022
  • Cracking ammonia inside solid oxide fuel cell (SOFC) stack is a compact and simple way. To prevent sharp temperature fluctuation and increase cell efficiency, the decomposition reaction should be spread on whole cell area. This leading to a question that, how does anode thickness affect the conversion rate of ammonia and the cell voltage? Since the 0D model of SOFC is useful for system level simulation, how accurate is it to use equilibrium solver for internal ammonia cracking reaction? The 1D model of ammonia fed SOFC was used to simulate the diffusion and reaction of ammonia inside the anode electrode, then the partial pressure of hydrogen and steam at triple phase boundary was used for cell voltage calculation. The result shows that, the ammonia conversion rate increases and reaches saturated value as anode thickness increase, and the saturated thickness is bigger for lower operating temperature. The similar cell voltage between 1D and 0D models can be reached with NH3 conversion rate above 90%. The 0D model and 1D model of SOFC showed similar conversion rate at temperature over 750℃.

An Assessment on Voltage and Power Quality in Load Facility during the Islanding of Residential Fuel Cell System (가정용 연료전지 시스템의 단독운전 시 부하설비의 전압 및 전력품질 평가)

  • Park, Chan-Eom;Jung, Jin-Soo;Han, Woon-Ki;Lim, Hyun-Sung;Song, Young-Sang;Kim, Choon-Sam;Lim, Duk-Gyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1792-1797
    • /
    • 2013
  • Recently, due to the excessive use of fossil fuels, many studies about the fossil fuels such as solar and fuel cell energy source are progressing. Fuel cell system has high energy conversion efficiency. Also, fuel cell system is environmentally friendly system because the carbon emission is almost not occur. Therefore, the fuel cell system is considered as the core technology of in the fields of the future energy and environmental. Fuel cell system has an effect on distribution power system because another power source of other than large power plants. So, fuel cell system can be reason of power quality in the power system. In this paper, we constructed the system for an assessment on Islanding. The system is composed with power source, Impedance coordination load and linear load, fuel cell system. we are performed assessment on voltage and power quality in customer and the distributed power system during the Islanding of residential fuel cell system. In addition, no change in the impedance of power system, we made a islanding condition only using the actual load, As a variation of generation and load current under islanding, an analysis results based on assessment system showed that the power qualities of distribution system became more aggravation as effect of voltage sag and voltage swell phenomena.

Development of TIG-Welder DC-DC Converter Based on Fuel Cell Stack (연료전지로 구동되는 TIG-용접기용 DC-DC 컨버터 개발)

  • Min, Myung-Sik;Park, Sang-Hoon;Jeon, Byum-Soo;Won, Chung-Yun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.8
    • /
    • pp.48-56
    • /
    • 2009
  • This paper presents the power conversion system for TIG-welder using the fuel cell stack Generally, power supply for TIG-welder uses the front-ended diode bridge rectifier by common AC power source. In this case, power supply of TIG-welder increases in volume because of using bulky capacitor and diode-rectifier. Also, input current includes ripple and harmonics. Moreover, TIG-welder will be demand the power supply with lightweight and easy movement in the areas like as the islands and mountainous areas or the special environment are not use common AC power source. Thus, input power of the power conversion system for TIG-welder is used PEMFC(Polymer Electrolyte Membrane Fuel Cell), and the power conversion system is comprised of full-bridge converter with function of boost converter and inverter welding source, in this paper. The proposed power conversion system which is power supply for TIG-welder was verified by computer simulations and experiments.

Thermodynamic Analysis on Steam Reforming of Hydrocarbons and Alcohols for Fuel Cell System (연료전지시스템을 위한 탄화수소 및 알코올 연료의 수증기 개질 특성에 관한 열역학적 연구)

  • Oh, Jin-Suk;Lee, Kyung-Jin;Kim, Sun-Hee;Oh, Sae-Gin;Lim, Tae-Woo;Kim, Jong-Su;Park, Sang-Kyun;Kim, Mann-Eung;Kim, Myoung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.388-396
    • /
    • 2011
  • The strengthened regulations for atmospheric emissions from ships have caused a necessity of new, alternative power system in ships for the low pollutant emissions and the high energy efficiency. Recently, new kinds of propulsion power system such as fuel cell system, which use hydrogen as an energy source, have been sincerely considered. Fuel conversion system to hydrogen is an essential part for fuel cell ship. We have investigated thermodynamically the steam reforming characteristics of hydrocarbons and alcohols for the fuel conversion systems.