• Title/Summary/Keyword: Fuel Cell Generation System

Search Result 326, Processing Time 0.027 seconds

Development of Power Conditioning System Control Algorithm for the Parallel Operation of High-Power Fuel Cell System (대용량 연료전지 시스템의 병렬운전을 위한 전력변환기 제어 알고리즘 개발)

  • Lee, Jin-Hee;Baek, Seung-Taek;Choi, Joon-Young;Suh, In-Young;Kim, Do-Hyung;Lim, Hee-Chun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.65-68
    • /
    • 2008
  • This paper proposes the parallel operation control algorithm of a power conditioning system (PCS) for a distributed Fuel Cell power generation system. A proposed control algorithm is made good a drawback of the conventional control algorithm. The controller must also supervise the total PCS operation while communicating with the fuel cell system controller. Simulation results are presented to performance of a proposed control algorithm for the PCS.

  • PDF

Development of an Air Supply System in 250 kW MCFC Fuel Cell System (250kW급 MCFC 연료전지 시스템용 공기공급장치 개발)

  • Park, Jung-Young;Hwang, Soon-Chan;Park, Moo-Ryong;Kim, Young-Chul;Ahn, Kook-Young
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.280-283
    • /
    • 2008
  • This study is concerned with development of air supply system in 250kW MCFC fuel cell system. The turbo blower is decided as an air supply system to increase the efficiency of fuel cell system. The turbo blower consists of an impeller, two vaneless diffuser, a vaned diffuser and a volute. The cascade diffuser is used to raise the efficiency of turbo blower. An aerodynamic design was done by applying the repeating design procedure including a meanline design, a 3D geometry generation and fluid dynamic calculation. It is confirmed from meanline and 3D flow analysis results that the operating range is enough and design requirements are successfully achieved. The performance test results were also included in this paper.

  • PDF

A Circuit Model of PEMFC for Design and Analyze Fuel Cell Power System (연료전지 전원 시스템의 설계 및 분석을 위한 PEMFC의 회로 모델)

  • Lee S.H.;Lee H.W.;Kwon S.K.
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.197-199
    • /
    • 2006
  • The Proton Exchange Membrane Fuel Cells (PEMFCs) are being used in a variety of applications including portable power generation, transportation and back-up power systems. In this paper presents a novel circuit model for a PEMFC that can be used to design and analyze fuel-cell power system. The Pspice-based model uses BJTs, L and C elements available in the Pspice library with some modification. The model includes the phenomena like activation polarization, ohmic polarization and mass transport effect present in a PEM fuel cell. Simulated characteristics of the fuel cell were compared with the experimental results obtained on a commercial fuel cell.

  • PDF

A Dynamic Simulation Model for the Operating Strategy Study of 1 kW PEMFC (가정용 연료전지 운전 모드 해석을 위한 동특성 모델 개발)

  • Yu, Sang-Seok;Lee, Young-Duk;Hong, Dong-Jin;Ahn, Kook-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.4
    • /
    • pp.313-321
    • /
    • 2008
  • Dynamics of the proton exchange membrane fuel cell is specially important when the system is frequently working on transient conditions. Even though the dynamics of proton exchange membrane fuel cell for residential power generation is less critical than that of PEMFC for transportation application, the system dynamics of PEMFC for RPG can be very important for daily start-up and stop. In particular, thermal management of the PEMFC for RPG is very important because the heat generation from electrochemical reaction is delivered to the home for hot water usages. Additionally, the thermal management is also very important for heat balance of the system and temperature control of the fuel cell. The objective of this study is to develop a dynamic system model for the study of PEMFC performance over various BOP options. Basic simulation results will be presented.

Analysis of Performance Characteristics of Gas Turbine-Pressurized SOFC Hybrid Systems Considering Limiting Design Factors (제한요소를 고려한 가스터빈-가압형 SOFC 하이브리드 시스템의 성능특성 해석)

  • Yang Won Jun;Kim Tong Seop;Kim Jae Hwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.11
    • /
    • pp.1013-1020
    • /
    • 2004
  • The hybrid system of gas turbine and fuel cell is expected to produce electricity more efficiently than conventional methods, especially in small power applications such as distributed generation. The solid oxide fuel cell (SOFC) is currently the most promising fuel cell for the hybrid system. To realize the conceptual advantages resulting from the hybridization of gas turbine and fuel cell, optimized construction of the whole system must be the most important. In this study, parametric design analyses for pressurized GT/SOFC systems have been peformed considering probable practical limiting design factors such as turbine inlet temperature, fuel cell operating temperature, temperature rise in the fuel cell and soon. Analyzed systems include various configurations depending on fuel reforming type and fuel supply method.

Generation characteristics of unit cell for MCFC (MCFC 의 단위전지 발전특성)

  • 김귀열;엄승욱;문성인;윤문수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.224-226
    • /
    • 1995
  • Molten Carbonate Fuel Cell are expected as an electric and thermal power source of the urban cogenerating system because MCFC have higher electric power efficiency and better thermal power quality. This study has examined generation characteristics of unit cell for MCFC.

  • PDF

Fuel Cell Hybrid Power System for Railway Vehicles (철도차량용 연료전지 하이브리드 동력시스템)

  • Kim, Young-Ryul;Park, Young-Ho;Kim, Young-Soo
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.855-861
    • /
    • 2008
  • The development of fuel cell hybrid power system, as a next generation power system for solving the global warming, has been being made actively progress around passenger vehicles. Also, in case of railway vehicles in unelectrified railway line, the adoption of fuel cell hybrid power system is being studied around well-known manufacturers. This paper introduces both the configuration and the control strategy of fuel cell hybrid power system in order to apply to a light electronic railway vehicle having a repeated driving pattern of acceleration, coasting and deceleration and provides simulation results to evaluate their validity.

  • PDF

Economic Feasibility Study for Molten Carbonate Fuel Cells Fed with Biogas

  • Song, Shin-Ae;Han, Jong-Hee;Yoon, Sung-Pil;Nam, Suk-Woo;Oh, In-Hwan;Choi, Dae-Ki
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.2
    • /
    • pp.102-111
    • /
    • 2010
  • Molten carbonate fuel cell (MCFC) power plants are one of most attractive electricity generation systems for the use of biogas to generate high-efficiency ultra-clean power. However, MCFCs are considerably more expensive than comparable conventional electricity generation systems. The commercialization of MCFCs has been delayed more than expected. After being effective in the Kyoto protocol and considerably increasing the fossil price, the attention focused on $CO_2$ regression and renewable energy sources has increased dramatically. In particular, the commercialization and application of MCFC systems fed with biogas have been revived because of the characteristics of $CO_2$ collection and fuel variety of MCFCs. Better economic results of MCFC systems fed with biogas are expected because biogas is a relatively inexpensive fuel compared to liquefied natural gas (LNG). However, the pretreatment cost is added when using anaerobic digester gas (ADG), one of the biogases, as a fuel of MCFC systems because it contains high $H_2S$ and other contaminants, which are harmful sources to the MCFC stack in ADG. Thus, an accurate economic analysis and comparison between MCFCs fed with biogas and LNG are very necessary before the installation of an MCFC system fed with biogas in a plant. In this paper, the economic analysis of an MCFC fed with ADG was carried out for various conditions of electricity and fuel price and compared with the case of an MCFC fed with LNG.

Development of 1 kW class PEFC co-generation system for buildings (1kW 급 건물용 연료전지 시스템 개발 현황)

  • Jun, Hee-Kwon;Hwang, Jung-Tae;Lee, Kap-Sik;Choi, Choeng-Hoon;Lee, Dong-Hwal;Bae, Joon-Kang
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.328-330
    • /
    • 2009
  • 1 kW class Polymer Electrolyte Fuel Cell(PEFC) co-generation systems have been developed from 2001 and evaluated for improvement of efficiency, durability and reliability of the system. This paper introduce new version system including with excellent reliability, durability and user friendly applications. Its electrical and overall efficiency showed 35 % and 80 %, respectively, and noise level of the system was less than 45 dB. In addition, this system have various functions such as load change, $N_2$ less purge, low emission and low temperature operation ($-15^{\circ}C$) through development of operation logic. This system was designed for convenient installation in indoor and outdoor due to the compactness of size and the separation of electrical and heat recovery units, which means a user can select the size of heat recovery unit.

  • PDF

Single-Phase Utility-Interactive Inverter for Residential Fuel Cell Generation System (가정용 연료전지 발전 시스템을 위한 단상 계통연계형 인버터)

  • Jung, Sang-Min;Bae, Young-Sang;Yu, Tae-Sik;Kim, Hyo-Sung;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.81-88
    • /
    • 2007
  • In this paper, a new single-phase utility-interactive inverter system for residential power generation with fuel cell is proposed. The proposed inverter system is not only capable of working in both stand-alone and grid-connected mode, but also ensures smooth and automatic transfer between the two modes of operation. The proposed control method has little steady-state error and good transient response characteristic. Also, the control method can be implemented using low-cost, fixed point DSP since it has simpler structure, smaller amount of calculation, and smaller number of sensors. The controller for the proposed utility-interactive inverter system is described, and the validity is verified through simulation and experiment.