MCFC 발전 기술의 실용화를 위하여 $3,000cm^2$ 면적의 단위전지 20장으로 구성된 5 kW 급 MCFC 스택을 5,760 시간 동안 운전하여 그 운전특성을 파악하였다. 스택은 7.6 kW의 출력을 보여주어 설계치보다 높은 출력을 보여주었다. 아울러 스택 성능 및 스택내 운전온도 분포변화를 해석하기 위하여 열전달, 유동방정식 및 연료전지 반응특성을 고려한 수학적 모델을 완성하였다. 완성된 수학적 모델 전산 모사를 위하여 상용 CFD 코드를 이용한 프로그램을 개발하였고 개발된 스택 전산모사 코드는 실제 운전된 5 kW MCFC 스택 운전 자료와 이론적 계산결과와 비교하여 그 신뢰성을 확인하였다.
전산유체해석(CFD) 기법을 이용하여 음극 지지체형 고체산화물 연료전지(SOFC)에 대한 수치해석을 수행하였다. 평판형 구조의 SOFC 에서 가스채널과 리브폭 변화에 따른 성능과 온도균일성에 관한 연구가 이루어졌다. 전산해석 툴로서는 공개소스 전산유체해석 툴박스인 OpenFOAM 을 이용하였다. 수치해석결과, 산소고갈이 일어나지 않는 범위 내에서 가스채널과 리브폭의 증가는 성능과 온도 균일성에 크게 영향을 미치지 않음을 알 수 있었다. 하지만 넓은 리브폭의 사용과 고전류밀도에서의 작동은 산소고갈로 인한 성능저하의 가능성이 있음을 확인하였다.
The water droplet motion and the interaction between the droplets in a PEMFC air flow channel with multiple pores, through which water emerges, is studied numerically by solving the equations governing the conservation of mass and momentum. The liquid-gas interface is tracked by a level set method which is based on a sharp-interface representation for accurately imposing the matching conditions at the interface. The method is modified to implement the contact angle conditions on the walls and pores. The dynamic interaction between the droplets growing on multiple pores while keeping the total water flow rate through pores constant is investigated by conducting the computations until the droplet motion exhibits a periodic pattern. The numerical results show that the droplet merging caused by increasing the number of pores is not effective for water removal and that the contact angle of channel wall strongly affects water management in the PEMFC air flow channel.
The water droplet motion in an air flow microchannel with pores through which water emerges is studied numerically by solving the equations governing the conservation of mass and momentum. The gas-liquid interface is tracked by a level set method which is based on a sharp-interface representation for accurately imposing the matching conditions at the interface and is modified to implement the contact angle conditions on the wall and pores. The numerical results show that the droplet growth and detachment pattern depend significantly on the contact angle and inlet air velocity. Also, the dynamic interaction between the droplets growing on multiple pores is investigated. The pore arrangement subject to droplet merging is found to be not effective for water removal.
본 연구에서는 3차원 전산유체역학 모델을 적용하여 서펜타인 유로를 갖는 고분자 전해질 분리막(PEM) 연료전지의 성능평가를 수행하였다. PEM 연료전지의 전산 모델은 등온조건하에서의 이동현상을 고려하여, 물질 및 운동량 전달, 전극에서의 반응속도론 그리고 전기적 흐름을 모두 포함하였다. 한편, 병류로 흐르도록 형성된 구조의 유로 형태는 본 연료전지모델에서 유로의 폭과 높이의 비인 종횡비와 유로와 립 폭의 비인 반응면적비를 변화시키며 다양한 형상으로 고려되었다. 유로의 형상이 변화될 경우 연료전지 내부의 수소와 산소의 질량분율 분포가 계산되었으며, 이에 따라, 활성화과전압의 계산 값이 변하게 되며 전류밀도 분포가 최종적으로 결정되었다. CFD 결과는 종횡비가 클수록 성능이 증가하고 반응면적비가 클수록 성능이 감소하는 것을 보였다. 본 연구의 모델에 의하면 서펜타인 유로의 형상에 의해, 성능특성이 경향성을 보이는 결과를 보여주었으며, 이와같은 결과는 다른 문헌에 보고 된 CFD 결과들과 전반적으로 잘 부합하는 것으로 나타났다.
Relatively high convective flow exists in the under-rib regions of a gas diffusion layer (GDL) when serpentine flow fields are employed in a PEMFC. This under-rib convection is believed to be favorable for the performance of PEMFCs, by enabling more effective use of catalysts in the under-rib regions. From the fact that the under-rib convection in a GDL is directly proportional to the permeability of the GDL, computational fluid dynamics (CFD) simulations were performed to discover the relationship between the GDL permeability and the PEMFC performance. Single-, triple-, and quintuple-path parallel serpentine flow fields for $9\;cm^2$ active cell area were considered while changing the GDL permeability from $1{\times}10^{-12}$ to $5{\times}10^{-11}m^2$. The results showed that higher GDL permeability generally resulted in better performance of PEMFCs, but the degree of performance enhancement became smaller as the parallel path number increased. The effects of the permeability on the local variables were also discussed.
Water management is one of many operating parameters, which influences the performance and stability of a proton exchange membrane fuel cell (PEMFC). Local humidity condition including liquid water saturation has profound impacts on the distributions of overpotentials, current density, and membrane water content. Computational fluid dynamics simulations were conducted to investigate the effect of the inlet humidity variation on the performance of a PEMFC of $9\;cm^2$ active cell area with serpentine flow fields. The results showed that the performance of the simulated PEMFC remained at an almost same level when the cathode inlet humidity was changed from 100% to 60%, while reaching its maximum at air humidity of 80%. However, further decrease in the cathode inlet humidity below 40% started to significantly deteriorate the performance of the PEMFC. The variations of overpotentials, membrane water content, etc. due to the change in the cathode inlet humidity were also discussed.
Proton Exchange Membrane Fuel Cells (PEMFC) are the most appropriate for energy source of small robot applications. PEMFC has superior in power density and thermodynamic efficiency as compared with the Direct Methaol Fuel Cell (DMFC). Furthermore, PEMFC has lighter weight and smaller size than DMFC which are very important factors as small robot power system. The most significant factor of mobile robots is weight which relates closely with energy consumption and robot operation. This research tried to find optimum specifications in terms of type, number of cell, active area, cooling method, weight, and size. In order to find optimum 500W PEMFC, six options are designed in this paper and studied to reduce total stack weight by applying new materials and design innovations. However, still remaining problems are thermal management, robot space for energy sources, and soon. For a thermal management, design options need to analysis of Computational Fluid Dynamics (CFD) for determining which option has the improved performance and durability.
Proton Exchange Membrane Fuel Cells (PEMFC) are the most appropriate for energy source of small robot applications. PEMFC has superior in power density and thermodynamic efficiency as compared with the Direct Methaol Fuel Cell (DMFC). Furthermore, PEMFC has lighter weight and smaller size than DMFC which are very important factors as small robot power system. The most significant factor of mobile robots is weight which relates closely with energy consumption and robot operation. This research tried to find optimum specifications in terms of type, number of cell, active area, cooling method, weight, and size. In order to find optimum 500W PEMFC, six options are designed in this paper and studied to reduce total stack weight by applying new materials and design innovations. However, still remaining problems are thermal management, robot space for energy sources, and so on. For a thermal management, design options need to analysis of Computational Fluid Dynamics (CFD) for determining which option has the improved performance and durability.
A centrifugal turbo blower of the fuel cell electric vehicle (FCEV) operates at very high speed above 30000 rpm in order to increase the pressure of the air, which supplied to a stack of FCEV, using rotation of its impeller blades. Vibration which originated from the blower is generated by unbalance of mechanical components, rotation of bearings and rotating asymmetry that rotate at high speed. The vibration is transmitted to receiving structure through vibration isolators and it can causes serious problems in the noise, vibration and harshness(NVH) performance. Thus, the study about reducing this kind of vibration is an important task. In this paper, dynamic analysis of the blower executed by numerical simulation and experimental analysis of the blower is also performed. Then, measured and simulated results are compared in order to validate of the simulation. Finally, reducing vibration through modifying mount stiffness is the main purpose of this paper.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.