• Title/Summary/Keyword: Fuel Cell Dynamics

Search Result 131, Processing Time 0.02 seconds

A CFD Study on the Hydrogen Leakage for Residential Fuel cell System (가정용 연료전지 시스템 내부의 수소 누출에 관한 전산해석)

  • Ahn, Jae-Uk;Chung, Tae-Yong;Shin, Dong-Hoon;Nam, Jin-Hyun;Kim, Young-Gyu;Park, Ju-Won
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2026-2031
    • /
    • 2007
  • Hydrogen is receiving much research attention as an alternative substitute for hydrocarbon fuels these days due to its cleanliness and renewability. However, hydrogen should be used with caution because of its high propensity for leak and wide flammable range. This study deals with a situation that hydrogen leaks and then forms a flammable mixture inside 1kW class residential fuel cell. The residential fuel cell was modeled as a box-shaped chamber with vent openings at the top and bottom, filled with various components such as reformer, desulfurizer, fuel cell stack and humidifier. Computational fluid dynamics (CFD) was used to simulate the diffusion, buoyant flow and accumulation of leaked hydrogen in the modeled chamber. From the simulation, the risk region vulnerable to flame was identified and the methods to minimize such hazardous region was discussed. When the vent openings are 1% of the total surface, as the quantity of hydrogen leakage increases the risk regions increases accordingly. As the vent openings of the total surface increased from 1% to 2.3%, averaged hydrogen mole fraction is under 1% in the system.

  • PDF

Performance Simulation of Planar Solid Oxide Fuel Cells Characteristics: Computational Fluid Dynamics (전산 유체 모델링을 이용한 평판형 고체산화물 연료전지 작동특성 전산모사)

  • Woo Hyo Sang;Chung Yong-Chae
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.2
    • /
    • pp.69-79
    • /
    • 2004
  • To correctly simulate performance characteristics of fuel cells with a modeling method, various physical and chemical phenomena must be considered in fuel cells. In this study, performance characteristics of planar solid oxide fuel cells were simulated by a commercial CFD code, CFD-ACE+. Through simultaneous considerations for mass transfer, heat transfer and charge movement according to electrochemical reactions in the 3-dimensional planar SOFC unit stack, we could successfully predict performance characteristics of solid oxide fuel cells under operation for structural and progress variables. In other words, we solved mass fraction distribution of reactants and products for diffusion and movement, and investigated qualitative and quantitative analysis for performance characteristics in the SOFC unit stack through internal temperature distribution and polarization curve for electrical characteristics. Through this study, we could effectively predict performance characteristics with variables in the unit stack of planar SOFCs and present systematic approach for SOFCs under operation by computer simulation.

Design of the Fuel Cell Powered Line-Interactive UPS System (연료전지 시스템을 이용한 Line-Interactive 방식의 무정전 전원 공급 장치의 설계)

  • Choi, Woo-Jin;Jeon, Hee-Jong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.6
    • /
    • pp.205-212
    • /
    • 2004
  • In this paper the design of a 1-[KVA] fuel cell powered line-interactive UPS system employing modular (fuel cell & DC/DC converter) blocks is proposed. The proposed system employs the two fuel cell modules along with suitable DC/DC converters and these modules share the DC-Link of the DC/AC inverter. A supercapacitor module is also employed to compensate for the instantaneous power fluctuations and to overcome the slow dynamics of the fuel processor. The energy stored in the supercapacitor can also be utilized to handle the overload conditions for a short time period. Due to the absence of batteries, the system satisfies the demand for an environmentally friendly and dean source of the energy. A complete design example illustrating the amount of hydrogen storage required for 1hr power outage, and sizing of supercacpacitor for transient load demand is presented for a 1-[KVA] UPS.

Functional Analysis of Electrode and Small Stack Operation in Solid Oxide Fuel Cell (고체산화물 연료전지의 전극과 스택운영의 기능적 분석)

  • Bae, Joong-Myeon;Kim, Ki-Hyun;Ji, Hyun-Jin;Kim, Jung-Hyun;Kang, In-Yong;Lim, Sung-Kwang;Yoo, Young-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.812-822
    • /
    • 2006
  • This study amis to investigate the functional analysis of anode and cathode materials in Anode supported Solid Oxide Fuel Cell. The concentration polarization of single cell was investigated with CFD (Computational Fluid Dynamics) method for the case of the different morphology by using four types of unit cell and discussed to reduce the concentration polarization. The concentration polarization at anode side effected the voltage loss in Anode supported Solid Oxide Fuel Cell and increased contact areas between fuel gas and anode side could reduce the concentration polarization. For intermediate temperature operation, Anode-supported single cells with thin electrolyte layer of YSZ (Yttria-Stabilized Zirconia) were fabricated and short stacks were built and evaluated. We also developed diesel and methane autothermal reforming (ATR) reactors in order to provide fuels to SOFC stacks. Influences of the $H_2O/C$ (steam to carbon ratio), $O_2/C$ (oxygen to carbon ratio) and GHSV (Gas Hourly Space Velocity) on performances of stacks have been investigated. Performance of the stack operated with a diesel reformer was lower than with using hydrogen as a fuel due to lower Nernst voltage and carbon formation at anode side. The stack operated with a natural gas reformer showed similar performances as with using hydrogen. Effects of various reformer parameters such as $H_2O/C$ and $O_2/C$ were carefully investigated. It is found that $O_2/C$ is a sensitive parameter to control stack performance.

Design of flow path with 2 inlet and outlets to improve cell performance and prevent cell degradation in Solid Oxide Fuel Cell (SOFC 셀 성능 향상 및 수명 저하 방지를 위한 입구와 출구 2개의 유로 설계)

  • Kim, Dongwoo;Yeom, Eunseop
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.2
    • /
    • pp.56-62
    • /
    • 2021
  • Solid oxide fuel cells (SOFCs) is the high efficiency fuel cell operating at high temperatures ranging from 700-1000℃. Design of the flow paths of the fuel and air in SOFCs is important to improve cell performance and prevent cell degradation. However, the uneven distribution of current density in the traditional type having one inlet and outlet causes cell degradation. In this regard, the parallel flow path with two inlet and outlets was designed and compared to the traditional type based on computational fluid dynamics (CFD) simulation. To check the cell performance, hydrogen distribution, velocity distribution and current density distribution were monitored. The results validated that the parallel designs with two inlets and outlets have a higher cell performance compared to the traditional design with one inlet and outlet due to a larger reaction area. In case of uniform-type paths, more uniform current density distribution was observed with less cross-sectional variation in flow paths. In case of contracted and expanded inflow paths, significant improvement of performance and uniform current density was not observed compared to uniform parallel path. Considering SOFC cell with uniform current density can prevent cell degradation, more suitable design of SOFC cell with less cross-sectional variation in the flow path should be developed. This work can be helpful to understand the role of flow distribution in the SOFC performance.

Multiscale Modeling and Simulation of Direct Methanol Fuel Cell (직접메탄올 연료전지의 Multiscale 모델링 및 전산모사)

  • Kim, Min-Su;Lee, Young-Hee;Kim, Jung-Hwan;Kim, Hong-Sung;Lim, Tae-Hoon;Moon, Il
    • Membrane Journal
    • /
    • v.20 no.1
    • /
    • pp.29-39
    • /
    • 2010
  • This study focuses on the modeling of DMFC to predict the characteristics and to improve its performance. This modeling requires deep understanding of the design and operating parameters that influence on the cell potential. Furthermore, the knowledge with reference to electrochemistry, transport phenomena and fluid dynamics should be employed for the duration of mathematical description of the given process. Considering the fact that MEA is the nucleus of DMFC, special attention was made to the development of mathematical model of MEA. Multiscale modeling is comprised of process modeling as well as a computational fluid dynamics (CFD) modeling. The CFD packages and process simulation tools are used in simulating the steady-state process. The process simulation tool calculates theelectrochemical kinetics as well as the change of fractions, and at the same time, CFD calculates various balance equations. The integrated simulation with multiscal modeling explains experimental observations of transparent DMFC.

Temperature Characteristics of the Molten Carbonate Fuel Cell Stack (용융탄산염형 연료전지의 스택구조와 온도특성)

  • Lee, Choong-Gon;Ahn, Kyo-Sang;Park, Seong-Yeon;Seo, Hai-Kyung;Lim, Hee-Chun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.1
    • /
    • pp.54-61
    • /
    • 2004
  • Temperature characteristics in a stack of molten carbonate fuel cell (MCFC) have been investigated with simulation based on the computational fluid dynamics (CFD) codes and experimental way. The MCFC has generally two stack structures when the natural gas is used as fuel; one is the external reforming type and the other is internal reforming type. Computer simulation at the external reforming stack suggests that the maximum temperature in the stack depends on the gas flow length. The 2 kW MCFC stack with 25 cm gas flow length showed about $675^\circ{C}$ of maximum temperature.

Simulation of direct methanol fuel cells employing computational fluid dynamics (직접 메탄올 연료전지의 전산모사에 관한 연구)

  • Kim Yeong Jin;Oh In Hwan;Hong Seong An;Kim Hyeok Nyeon;Lee Tae Hui;Ha Heung Yong
    • 한국전기화학회:학술대회논문집
    • /
    • 2002.07a
    • /
    • pp.189-192
    • /
    • 2002
  • An analytical study on BMFCS was carried out by employing the computational fluid dynamics(CFD) method. In this study, the commercial CFD code Fluent(ver. 5.5) was used, and many assumptions were adopted to simplify the situation in the fuel cell. From the simulation, many valuable informations were obtained in terms of distributions of velocity, pressure, temperature, density and current density over the flow field. And thus, it was anticipated that the simulation results were very helpful in developing DMFCs by facilitate optimization of structures of electrodes and flow field of the separator.

  • PDF

Molecular Dynamics Simulations on Catalyst Layers of Polymer Electrolyte Membrane Fuel Cell (고분자 전해질막 연료전지 전극층에서의 분자동역학 연구)

  • Kang, Haisu;Kwon, Sung Hyun;Lee, Seung Geol
    • Prospectives of Industrial Chemistry
    • /
    • v.24 no.3
    • /
    • pp.14-27
    • /
    • 2021
  • 수소 에너지는 환경 문제를 최소화하고 고갈되는 화석연료를 대체할 수 있는 에너지원으로 각광을 받고 있다. 수소연료전지는 이러한 수소를 에너지원으로 사용하고 수소를 전기에너지로 전환하여 그 부산물로 물을 만드는 대표적인 친환경 전기화학 장치이다. 고분자 전해질막 연료전지는 수소이온교환 특성을 갖는 고분자막을 전해질로 사용하는 연료전지로 막전극집합체의 전극층은 촉매가 포함된 고분자 전해질막 연료전지의 주요 요소 중의 하나이다. 소재개발 측면에서 고분자 전해질막 연료전지 전극층 핵심 소재의 물성 발현 원리 등을 이해하고 최적화된 소재 설계를 위해서는 원자레벨에서의 소재 설계 접근법이 필요하다. 따라서 실험적인 연구가 어려운 부분과 원자단위에서의 물질 현상에 대한 이해 그리고 연구 개발의 효율성 증진을 위해 전산재료과학(computational materials science) 기술이 광범위하게 활용될 수 있다. 본 기고문에서는 고분자 전해질막 연료전지에서의 전극층 소재에 대한 분자동역학 기반의 전산모사 활용과 연구동향에 대하여 소개하고자 한다.

Effect of Flow Direction on Temperature Uniformity in Solid Oxide Fuel Cell (고체산화물 연료전지의 유동방향에 따른 온도 균일성 영향)

  • Jeon, Dong Hyup;Shin, Dong-Ryul;Ryu, Kwang-Hyun;Song, Rak-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.10
    • /
    • pp.667-673
    • /
    • 2017
  • We investigated the temperature uniformity in an anode-supported solid oxide fuel cell, using the open source computational fluid dynamics (CFD) toolbox, OpenFOAM. Numerical simulation was performed in three different flow paths, i.e., co-flow, counter-flow, and cross-flow paths. Gas flow in a porous electrode was calculated using effective diffusivity while considering the effect of interconnect rib. A lumped internal resistance model derived from a semi-empirical correlation was implemented for the calculation of electrochemical reaction. The result showed that the counter-flow path displayed the most uniform temperature distribution.