• Title/Summary/Keyword: FtsZ

Search Result 17, Processing Time 0.023 seconds

Cloning, Expression, and Polymerization Assay of FtsZ Protein from Staphylococcus aureus (Staphylococcus aureus FtsZ의 클로닝, 발현 및 폴리머 형성 활성 분석)

  • Son, Sang Hyeon;Lee, Dong Yun;Kim, Ye Jun;Ko, Sooho;Cho, Seong Jun;Jung, Hyo Cheol;Lee, Hyung Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.3
    • /
    • pp.274-277
    • /
    • 2012
  • Cytokinesis is the final stage of cell division, dividing one mother cell into two daughter cells. For the cutting of a plasma membrane during bacterial cytokinesis, a tubulin homolog FtsZ protein is recruited from the cytoplasm to the division site. FtsZ protein polymerizes in a GTP-dependent manner and its N-terminal domain has a GTPase activity. In this study, we have begun to characterize FtsZ from Staphylococcus aureus (SA). Full-length SA FtsZ was cloned into pRSFDuet-1 vector and the clone was transformed into a BL21 (DE3) star cell. The recombinant SA FtsZ protein was purified using Ni-NTA affinity chromatography and dialysis. Using a spectrofluorometer, we showed that SA FtsZ undergoes a GTP-dependant polymerization in vitro. The polymer of the SA FtsZ protein disappeared after a few minutes, suggesting that the polymer is degraded as the GTP is consumed. This assay system may well be applied for inhibitor screening targeting S. aureus FtsZ.

Structural and Biochemical Studies Reveal a Putative FtsZ Recognition Site on the Z-ring Stabilizer ZapD

  • Choi, Hwajung;Min, Kyungjin;Mikami, Bunzo;Yoon, Hye-Jin;Lee, Hyung Ho
    • Molecules and Cells
    • /
    • v.39 no.11
    • /
    • pp.814-820
    • /
    • 2016
  • FtsZ, a tubulin homologue, is an essential protein of the Z-ring assembly in bacterial cell division. It consists of two domains, the N-terminal and C-terminal core domains, and has a conserved C-terminal tail region. Lateral interactions between FtsZ protofilaments and several Z-ring associated proteins (Zaps) are necessary for modulating Z-ring formation. ZapD, one of the positive regulators of Z-ring assembly, directly binds to the C-terminal tail of FtsZ and promotes stable Z-ring formation during cytokinesis. To gain structural and functional insights into how ZapD interacts with the C-terminal tail of FtsZ, we solved two crystal structures of ZapD proteins from Salmonella typhimurium (StZapD) and Escherichia coli (EcZapD) at a 2.6 and $3.1{\AA}$ resolution, respectively. Several conserved residues are clustered on the concave sides of the StZapD and EcZapD dimers, the suggested FtsZ binding site. Modeled structures of EcZapD-EcFtsZ and subsequent binding studies using bio-layer interferometry also identified the EcFtsZ binding site on EcZapD. The structural insights and the results of bio-layer interferometry assays suggest that the two FtsZ binding sites of ZapD dimer might be responsible for the binding of ZapD dimer to two protofilaments to hold them together.

Madurahydroxylactone, an Inhibitor of Staphylococcus aureus FtsZ from Nonomuraea sp. AN100570

  • Kim, Bo-Min;Choi, Ha-Young;Kim, Geon-Woo;Zheng, Chang-Ji;Kim, Young-Ho;Kim, Won-Gon
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.11
    • /
    • pp.1994-1998
    • /
    • 2017
  • FtsZ, a bacterial cell-division protein, is an attractive antibacterial target. In the screening for an inhibitor of Staphylococcus aureus FtsZ, madurahydroxylactone (1) and its related derivatives 2-5 were isolated from Nonomuraea sp. AN100570. Compound 1 inhibited S. aureus FtsZ with an $IC_{50}$ of $53.4{\mu}M$ and showed potent antibacterial activity against S. aureus and MRSA with an MIC of $1{\mu}g/ml$, whereas 2-5 were weak or inactive. Importantly, 1 induced cell elongation in the cell division phenotype assay, whereas 2-5 did not. It indicates that 1 exhibits its potent antibacterial activity via inhibition of FtsZ, and the hydroxyl group and hydroxylactone ring of 1 are critical for the activity. Thus, madurahydroxylactone is a new type of inhibitor of FtsZ.

Viriditoxin Induces G2/M Cell Cycle Arrest and Apoptosis in A549 Human Lung Cancer Cells

  • Park, Ju Hee;Noh, Tae Hwan;Wang, Haibo;Kim, Nam Deuk;Jung, Jee H.
    • Natural Product Sciences
    • /
    • v.21 no.4
    • /
    • pp.282-288
    • /
    • 2015
  • Viriditoxin is a fungal metabolite isolated from Paecilomyces variotii, which was derived from the giant jellyfish Nemopilema nomurai. Viriditoxin was reported to inhibit polymerization of FtsZ, which is a key protein for bacterial cell division and a structural homologue of eukaryotic tubulin. Both tubulin and FtsZ contain a GTP-binding domain, have GTPase activity, assemble into protofilaments, two-dimensional sheets, and protofilament rings, and share substantial structural identities. Accordingly, we hypothesized that viriditoxin may inhibit eukaryotic cell division by inhibiting tubulin polymerization as in the case of bacterial FtsZ inhibition. Docking simulation of viriditoxin to ${\beta}-tubulin$ indicated that it binds to the paclitaxel-binding domain and makes hydrogen bonds with Thr276 and Gly370 in the same manner as paclitaxel. Viriditoxin suppressed growth of A549 human lung cancer cells, and inhibited cell division with G2/M cell cycle arrest, leading to apoptotic cell death.

The Role of Cytoskeletal Elements in Shaping Bacterial Cells

  • Cho, Hongbaek
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.3
    • /
    • pp.307-316
    • /
    • 2015
  • Beginning from the recognition of FtsZ as a bacterial tubulin homolog in the early 1990s, many bacterial cytoskeletal elements have been identified, including homologs to the major eukaryotic cytoskeletal elements (tubulin, actin, and intermediate filament) and the elements unique in prokaryotes (ParA/MinD family and bactofilins). The discovery and functional characterization of the bacterial cytoskeleton have revolutionized our understanding of bacterial cells, revealing their elaborate and dynamic subcellular organization. As in eukaryotic systems, the bacterial cytoskeleton participates in cell division, cell morphogenesis, DNA segregation, and other important cellular processes. However, in accordance with the vast difference between bacterial and eukaryotic cells, many bacterial cytoskeletal proteins play distinct roles from their eukaryotic counterparts; for example, control of cell wall synthesis for cell division and morphogenesis. This review is aimed at providing an overview of the bacterial cytoskeleton, and discussing the roles and assembly dynamics of bacterial cytoskeletal proteins in more detail in relation to their most widely conserved functions, DNA segregation and coordination of cell wall synthesis.

Production of Poly(3-hydroxybutyrate) [P(3HB)] with High P(3HB) Content by Recombinant Escherichia coli Harboring the Alcaligenes latus P(3HB) Biosynthesis Genes and the E. coli ftsZ Gene

  • Choi, Jong-Il;Lee, Sang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.722-725
    • /
    • 1999
  • Filamentation-suppressed recombinant Escherichia coli strain harboring the Alcaligenes latus polyhydroxyalkanoate (PHA) biosynthesis genes and the E. coli ftsZ gene was constructed and cultivated for the production of poly(3-hydroxybutyrate) [P(3HB)] with high concentration and high content. By the pH-stat fed-batch culture of this recombinant E. coli strain XL1-Blue(pJC5), the final cell concentration and P(3HB) concentration obtained in 44.25h were 172.2g cell dry weight/l and 141.9g P(3HB)/l, respectively, resulting in productivity of 3.21g P(3HB)/l-h. More importantly, the P(3HB) content obtained was 82.4 wt %, which was significantly higher than that obtained with the recombinant E. coli harboring only the PHA biosynthesis genes.

  • PDF

Enhancement of Chloroplast Transformation Frequency by Using Mesophyll Cells Containing a Few Enlarged Chloroplasts from Nuclear Transformed Plants in Tobacco (적은 수의 거대 엽록체를 가진 핵 형질전환 식물체를 이용한 담배 엽록체 형질전환 빈도 제고)

  • Jeong, Won-Joong;Min, Sung-Ran;Liu, Jang-R.
    • Journal of Plant Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.271-275
    • /
    • 2007
  • In the chloroplast transformation process, a chloroplast containing transformed chloroplast genome copies should be selected over wild-type chloroplasts on selection medium. It is more effective for a cell to become homoplasmic if the cell contains smaller number of chloroplasts. Therefore, to reduce the number of chloroplasts in mesophyll cells in tobacco, we overexpressed FtsZ to generate transgenic plants, of which mesophyll cell contained a few enlarged chloroplasts contrast to a wild-type mesophyll cell containing approximately 100 chloroplasts. It was demonstrated that transgenic leaf tissues comprising cells with a few enlarged chloroplasts gave rise to approximately 40% higher frequency of chloroplast-transformed adventitious shoots.

Characteristics of ITO electrode films grown on PET substrate by Roll-to-Roll Facing Target Sputtering system for flexible OLEDs

  • Cho, Sung-Woo;Choi, Kwang-Hyuk;Jeong, Jin-A;Kim, Bong-Seok;Jeong, Dae-Ju;Kim, Han-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.613-616
    • /
    • 2008
  • We report on electrical and optical properties of flexible ITO electrode grown on PET substrate using a specially designed roll-to-roll facing target sputtering (R2R FTS) system at room temperature without conventional cooling drum. Due to effective confinement of high density plasma between ITO targets, we can grow a flexible ITO electrode without cooling drum at room temperature.

  • PDF

Simultaneous Realization of Electromagnetic Shielding and Antibacterial Effect of Al Doped ZnO Thin Films onto Glass Substrate (유리 기판 위에 증착된 Al Doped ZnO 박막을 이용한 전자파 차폐 및 항균 특성의 동시 구현)

  • Choi, Hyung-Jin;Yoon, Soon-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.5
    • /
    • pp.279-283
    • /
    • 2016
  • In this study, we intended to achieve both antibacterial properties and electromagnetic shielding using the Al-doped ZnO (AZO) films. FTS (Facial Target Sputtering) magnetron sputtering was used for the AZO thin films instead of the conventional RF sputtering because the FTS sputtering could avoid the damage for the plasma as well as fabrication of thin films with a high quality. The 300-nm thick AZO thin films grown on glass substrate showed a resistivity of about $7{\times}10^{-4}{\Omega}-cm$ and a transmittance of about 90% at a wavelength of 550 nm. AZO thin films were investigated for the electromagnetic shielding effectiveness measured by 2-port network method at 1.5 ~ 3 GHz. The AZO (300 nm)/glass films showed an EMI shielding effectiveness of approximately 27 dB. An antibacterial effect was measured by the film attachment method (JIS Z 2801). The percent reductions of bacteria by AZO films were 99.99668% and 99.99999% against Staphylococcus aureus and Escherichia coli, respectively.

Effect of Wolbachia Infection on Fitness of Resistance to Dicofol in Tetranychus urticae (Acarina: Tetranychidae) (Wolbachia 감염이 디코폴 감수성 및 저항성 점박이응애 계통의 적합도에 미치는 영향)

  • 윤태중;류문일;조기종
    • Korean journal of applied entomology
    • /
    • v.40 no.4
    • /
    • pp.321-326
    • /
    • 2001
  • Contribution of Wolbachia infection to fitness of a species (developmental time, adult life span, fecundity and ovipositional period) was measured in the susceptible and dicofol-resistant strains of two spotted spider mite, Tetranychus urticae Koch, on miniature roses. Based on ftsZPCR assay, Wolbachia infection was confirmed only in the susceptible strain. The susceptible strain had significantly higher fecundity (eggs/female) and shorter developmental times than the resistant strain. Longer adult life span and ovipositional period were observed in the susceptible strain. Fitness differences were appeared to influence dicofol resistance development. Similar measurements were performed with progeny from two reciprocal $F_1$crosses. Similar to other examples of cytoplasmic incompatibility induced by Wolbachia, subsequent cross between uninfected female and infected male spider mites were different from the other combination: a high egg mortality and a male-biased sex ratio. When the intrinsic rate of natural increase was calculated, the cross between uninfected female and infected male spider mites had a significantly lower rate($0.09\pm$0.01) than did the other combination ($0.20\pm$0.01). These results suggest that the dynamic and evolution of the fitness are closely associated with dicofol resistance and Wolbachia infection in the two spotted spider mites.

  • PDF